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The detection of deleterious genetic variants in human 
genome: a key problem in Personalized and Precision 
Medicine 

HyperSMURF, an imbalance-aware ML method for 
detecting pathogenic variants in non-coding genome

Tuning its learning parameters can boost hyperSMURF 
predictions

An ongoing HPC massively parallel implementation of 
the method to automatically fit different genomic 
problems characterized by imbalanced big data



Issues:

How to find pathogenic variants in the sea of background (neutral) 
genetic variation in human genome?

A huge imbalance between deleterious  (positive examples) and 
neutral (negative examples) variants (e.g. 1/36000 ratio in 
Mendelian diseases, Smedley et al., 2016)

Which features should be used to train learning machines for the 
prediction of pathogenic variants?

Prediction of pathogenic variants in non-coding 
genome: a challenging machine learning problem

Classical ML algorithms fail: 

they are biased toward the majority class

Prediction of deleterious variants
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Prediction of deleterious variants: state of the art

State-of-the-art ML methods for the prediction of 
deleterious variants

● CADD (Kircher, et al. 2014)

● GWAVA (Ritchie et al 2014)

● DeepSEA  (Zhou & Troyanskaya, 2015)

● FATHMM-MKL (Shibab et al. 2015)

● Eigen (Ionita-Laza et al. 2016)

Quite surprisingly none of the above methods (apart from 
GWAVA) use imbalance-aware learning strategies 
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A first version of hyperSMURF
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● REMM (Regulatory Mendelian Mutation Score) a first 
version of hyperSMURF is part of the Genomiser tool for 
the identification of pathogenic regulatory variants in 
Mendelian disease (Smedley et al. AJHG, 2016)



HyperSMURF: a flexible tool for the prediction of deleterious variants
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● HyperSMURF - Hyper-ensemble SMote Undersampled 
Random Forest: a novel multi-parametric version of the 
method able to fit different problems in the context of the 
prediction of deleterious variants



HyperSMURF - 1

A ML approach to deleterious variants detection
Hyper-ensemble of Smote Undersampled Random Forests 
(HyperSMURF)

● Balancing training data through differential sampling:

-  Oversampling of the minority class

-  Partitioning and undersampling of the majority class

● Data coverage improvement and variance reduction through 
ensembling techniques

● Enhancing accuracy and diversity of the base learners 
through Hyper-ensembling
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HyperSMURF - 2

HyperSMURF:
Hyper-ensemble of SMote Undersampled Random Forests 
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HyperSMURF is very competitive with state-of-the-art methods:
AUPRC comparative results with state-of-the-art methods 

(Schubach et al. 2017)

10-fold “cytoband-aware” cross-validation: precision/recall curves

Mendelian diseases Complex diseases 
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-  the number n of partitions/ensembles
-  the oversampling factor f
-  the undersampling factor u
-  other “minor” parameters

HyperSMURF strength is evident with imbalanced data
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Drawbacks of HyperSMURF 

HyperSMURF learning depends on several 
parameters:

-  the number t of decision trees of 
the RF
-  the number m of randomly selected 
features

Hyper-
ensemble 
parameters

Ensemble 
parameters

Fitting different prediction problems requires 
proper tuning of the learning parameters 



HyperSMURF strength is evident with imbalanced data
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Learning parameters strongly affect  HyperSMURF performances

High impact of the hyperSMURF learning 
parameters on:

● Coverage of the data

● Balancing between deleterious and neutral variants

● Informativeness of the positive (deleterious) 
examples

● Effectiveness of the representation of the learning 
space

● Runtime and learning process

● Accuracy and diversity of the base learners

Results highly depend on the correct selection of the 
parameters for the specific problem under study



HyperSMURF strength is evident with imbalanced data
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An experimental study of the impact of learning parameters for the
prediction of non-coding deleterious variants in Mendelian diseases

● Same data used in Schubach et al, 2017:
● 406 SNV mutations manually curated (positives)
● 14M neutral variants (negatives)
● 26 genomic features indicators of variant functionality 

(e.g. GC-content, conservation, histone 
modifications, DNase I accessibility, overlap withTFB 
sites and enhancers, overlapping CNVs)  

● Hold-out setting for performance evaluation and 
internal cytoband-aware cross-validation (Smedley 
et al. 2016) for parameter tuning.

● 100 hyperSMURF models trained considering 
different combinations of n, f and u parameters

● Results obtained  using a serial implementation and 
an arrays of jobs on the CINECA Marconi cluster.
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Results

Cross-validation results on 
the training set across the 
100 models

Best model:
n=300, f=1, u=10

Results on an independent  test set.
Default parameters: n=100, f=2, u=3 (Schubach et al., 2017)
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Advantages and drawbacks

Results show that parameter tuning can boost 
hyperSMURF results

Drawbacks: training and testing  require from 2 to about 
20 hours of computation for each model using Intel Xeon 
processors E5, 2.30 GHz and 128 GB RAM

The situation can be even worse if we use e.g. thousands 
of features extracted from DNA with deep convolutional 
networks (Zhou and Troyanskaya, 2015)

Serial implementations, even with a cluster and arrays of 
jobs is not enough



Par-hyperSMURF: HPC version of hyperSMURF 
through a mixed MPI/OpenMP parallel implementation

A very flexible HPC architecture by which we can apply hyperSMURF not only to the 
prediction of pathogenic variants, but more in general to genomic problems 
characterized by big data and very small a priori available knowledge



Conclusions

 Data imbalance in genome-wide studies motivates 
hyperSMURF 

 Drawbacks of  hyperSMURF: many learning parameters that 
significantly affect prediction performance

 Parameter tuning can significantly boost hyperSMURF results
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Automatic  tuning of learning parameters 
Application of Par-hyperSMURF to:

Whole genome ranking and detection of mutations in  genetic diseases
Ranking and detection of cancer driver mutations
Personalized Medicine problems characterized by small a priori available 
knowledge and big data

Par-hyperSMURF - ongoing HPC parallel version  of hyperSMURF:
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Appendices



Whole Genome Sequencing (WGS) enables the investigation of 
genomic variation in coding as well in non-coding regions across the 
entire human genome

Detection of genetic variants – disease associations

Application to the detection of mutations associated with Mendelian 
(e.g. Cystic fibrosis or Huntington disease) and complex (e. Alzheimer's 
and Parkinson's) genetic disease.

Two main problems:
1) Most of genetic variation in human genome is “neutral”: how to  find 
“possible deleterious” variants?
2) Most studies focused on coding regions, but what about non coding 
regions?

The imbalancing problem
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Pseudocode of the
HyperSMURF
algorithm

HyperSMURF



SMOTE

SMOTE :
Synthetic Minority Oversampling Technique (Hall et al. 2002)
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Results

Compared precision, recall and F-score (complex diseases)
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HyperSMURF strength is evident with imbalanced data

AUPRC results of HyperSMURF and CADD 
at different imbalance levels
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HyperSMURF strength is evident with imbalanced data



Genomic experiments

Genome-wide 
prediction of 
deleterious 
variants in non 
coding region

1) Mendelian diseases:
406 SNV mutations manually 
curated (positive examples)

14M neutral variants 
(negatives)

2) Complex diseases:
2115 regulatory GWAS hits 
from the GWAS catalog 
(National Human Genome 
Research Institute)

1.4M neutral variants 
(negatives)

Experimental set-up
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Experimental set-up

Genomic attributes

1) Mendelian data: 26 
genomic attributes 
downloaded from public 
data bases (UCSC, 
Stanford, NCBI and 
others):

2) GWAS data: 1842 
genomic attributes 
directly extracted from 
DNA sequence through 
deep convolutional 
networks (Zhou & 
Troyanskaya, 2015)

● Conservation scores
● Transcriptional features
● Regulation features
● Overlapping CNVs
● GC content
● Epigenomic features

● DNAse features
● Transcription factor 

features
● Histone features
● Conservation scores
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First level of 
parallelization: effective 
multi-threading via 
OpenMP

Each partition is 
assigned to a thread (or 
a pool of threads) in a 
single node.

Tasks of 
over/undersampling and 
random forest training 
for each partition are 
executed in parallel.

This approach is very 
scalable, since the only 
sequential operation lies 
in the final score 
accumulation 
(performed atomically 
by each thread)



Second level of 
parallelization: multi-
node computing via MPI

Partitions are divided 
into chunks, and each 
chunk is assigned to a 
MPI process.

In each MPI process the 
same first level 
parallelization is 
applied.

Each MPI process can be 
handled by a different 
node in a cluster.

Intercommunication 
between MPI processes 
is required only in the 
initial dataset transfer 
and in the final 
accumulation.


