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Abstract

Several works showed that biomolecular data integration is a key issue to improve the
prediction of gene functions. Quite surprisingly only little attention has been devoted to
data integration for gene function prediction through ensemble methods. In this work we
show that relatively simple ensemble methods are competitive and in some cases are also
able to outperform state-of-the-art data integration techniques for gene function prediction.
Keywords: Gene function prediction, ensemble methods, biomolecular data integration

1. Introduction

The availability of an ever increasing amount of data sources due to recent advances in
high throughput biotechnologies opens unprecedented opportunities for genome-wide gene
function prediction. Indeed several works showed that biomolecular data integration plays
an essential role in the prediction of gene functions.

Gene function prediction in its general formulation is a complex classification problem
characterized by the following items: a) each gene/gene product can be assigned to multiple
terms/classes (a multiclass, multilabel classification problem); b) classes are structured ac-
cording to a predefined hierarchy: a directed acyclic graph for the Gene Ontology (GO) (The
Gene Ontology Consortium, 2000) or a tree forest for FunCat (Ruepp et al., 2004); c) classes
are usually unbalanced (with positive examples usually less than negatives); d) known gene
labels are in several cases uncertain; e) multiple sources of data can be used to predict gene
functions.

In this paper we focus on the last item, considering the problem of the prediction of a
subset of FunCat and GO classes in the model organism S. cerevisiae.

The main approaches proposed in the literature can be schematically subdivided in
three categories: functional linkage networks, vector subspace integration and kernel fusion
methods (Noble and Ben-Hur, 2007). Modelling interactions between gene products using
functional linkage networks is realized through graphs, where gene products are modeled as
nodes and relationships between genes through edges (Karaoz et al., 2004; Chua et al., 2007).

c©2009 Ré and Valentini.
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In vector space integration (VSI) different vectorial data are concatenated (desJardins et al.,
1997), while kernel methods, by exploiting the closure property with respect to the sum or
other meaningful algebraic operators represent another valuable research direction for the
integration of biomolecular data (Lanckriet et al., 2004).

All these methods suffer of limitations and drawbacks, due to their limited modularity
when new data sources are added (e.g. vector-space integration methods), or when data
are not available as relational data (e.g. functional linkage networks), or to their limited
scalability to multiple data sources (e.g. Kernel integration methods based on semidefinite
programming (Lanckriet et al., 2004)). About this last item, it is worth noting that quite
recently more efficient methods for multiple kernel learning have been proposed (Sonnenburg
et al., 2006; Rakotomamonjy et al., 2007), but in any case they are slower than solving single
SVMs and are relatively complicated to program.

Quite surprisingly, as observed by Noble and Ben-Hur (2007), only little attention has
been devoted to ensemble methods as a mean to integrate multiple biomolecular sources of
data for gene function prediction. To our knowledge only few works very recently considered
ensemble methods in this specific bioinformatics context: Naive-Bayes integration of the
outputs of SVMs trained with multiple sources of data (Guan et al., 2008), and logistic
regression for combining the output of several SVMs trained with different data and kernels
in order to produce probabilistic outputs corresponding to specific GO terms (Obozinski
et al., 2008).

The main aim of this work consists in showing that simple ensemble methods can obtain
results comparable with state-of-the-art data integration methods, exploiting at the same
time the modularity and scalability that characterize most of the ensemble algorithms.
Indeed biomolecular data differing for their structural characteristics (e.g. sequences, vec-
tors, graphs) can be easily integrated, because with ensemble methods the integration is
performed at the decision level, combining the outputs produced by classifiers trained on dif-
ferent datasets. Moreover, as new types of biomolecular data, or updates of data contained
in public databases, are made available to the research community, ensembles of learning
machines are able to embed new data sources or to update existing ones by training only
the base learners devoted to the newly added or updated data, without retraining the entire
ensemble. In other words ensemble methods scale well with the number of the available
data sources, and problems that characterize other data fusion approaches are thus avoided.

2. Methods

Data fusion can be realized by means of an ensemble system composed by learners trained
on different ”views” of the data and then combining the outputs of the component learners.
Each type of data may capture different and complementary characteristics of the objects
to be classified and the resulting ensemble may obtain better prediction capabilities through
the diversity and the anti-correlation of the base learner responses.

We programmatically considered simple methods: Weighted majority voting, Naive-
Bayes and Decision Templates.
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2.1 Weighted majority voting

Majority voting is based on the Condorcet Jury Theorem, proposed in the context of social
sciences since the end of XVIII century (de Condorcet, 1785). The theorem proves that the
judgment of a committee is superior to those of individuals, provided the individuals have
reasonable competence.

Given a set of k classes whose labels ωj ∈ Ω, 1 ≤ j ≤ k, we denote by dt,j(x) ∈ [0, 1] the
support (e.g. the probability) estimated by the base tth classifier of an ensemble composed
by L base learners, that a given example x belongs to the class ωj . For brevity we denote
dt,j(x) as dt,j . A simple way to integrate different data sources is represented by the weighed
linear combination rule (Kittler et al., 1998), by which the posterior probability P̂ of the
resulting ensemble is estimated as follows:

P̂ (ωj |x) =
L∑

t=1

wtdt,j(x) (1)

Considering that gene classes are largely unbalanced (positive examples are largely less than
negative ones), we chose the F-measure to compute the weights:

wl
t =

Ft∑L
t=1 Ft

w
log
t ∝ log

Ft

1− Ft
(2)

where Ft is the F-measure assessed on the training data for the tth base learner. The wl
t

weights are obtained by a linear combination of the F-measures, and w
log
t by a logarithmic

transformation. The decision Dj(x) of the ensemble about the class ωj is taken using the
estimated probability P̂ (eq. 1):

Dj(x) =

{
1, if P̂ (ωj |x) > 0.5
0, otherwise

(3)

where output 1 correspond to positive predictions for ωj and 0 to negatives.

2.2 Naive-Bayes combination

The Naive-Bayes combination assumes independence between classifiers, and estimates the
class-conditional support given the observed vector of categorized component classifiers
outputs (Titterington et al., 1981). We denote by st ∈ Ω the class predicted by the tth

classifier, that is, in our setting, st = arg maxj dt,j , and let be s =< s1, s2, . . . , sL > the
vector of the classes predicted by the L base learners. By assuming conditional independence
between classifiers, the class conditional probability for the class ωj ∈ Ω is:

P (s|ωj) = P (s1, s2, . . . , sL|ωj) =
L∏

i=1

P (si|ωj) (4)

and by applying the Bayes theorem we obtain the posterior probability for class ωj :

P (ωj |s) =
P (ωj)P (s|ωj)

P (s)
=

P (ωj)
∏L

i=1 P (si|ωj)
P (s)

(5)
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By estimating the class conditional probability P (si|ωj) for each base learner through the
confusion matrix M i computed on the training set, we can obtain an estimate of the pos-
terior probability of the ensemble for the class ωj . Finally, for each class ωj , the Bayes rule
is applied to choose the class predicted by the Naive-Bayes ensemble:

Dj(x) =

{
1, if P̂ (ωj |s) > 0.5
0, otherwise

(6)

In our implementation we applied the Titterington’s modification of the class conditional
probability estimate to regularize and avoid zero probabilities in the computation of eq. 5:

P̂ (si|ωj) =

(
mi

ωj ,si
+ 1/k

Nj + 1

)
(7)

where mi
ωj ,si

is the entry for the true class ωj and predicted class si of the confusion matrix
M i for the ith base learner, k is the number of classes and Nj the number of examples
belonging to class ωj .

2.3 Decision Templates

Decision Templates are a combination method based on the comparison of a ”prototypical
answer” of the ensemble for the examples belonging to a given class (the template) with
the current answer of the ensemble to a specific example whose class needs to be predicted
(the decision profile) (Kuncheva et al., 2001). The decision profile DP(x) for an instance x
is a matrix composed by dt,j ∈[0,1] elements representing the support (e.g. the probability)
given by the tth classifier to class ωj . Decision templates DTj are the averaged decision
profiles obtained from Xj , the set of training instances belonging to the class ωj :

DTj =
1
|Xj |

∑

x∈Xj

DP (x) (8)

By computing the similarity S between DP (x) and the decision template DTj for each
class ωj , from a set of c classes, the final decision of the ensemble is taken by assigning a
test instance x to a class with the largest similarity (Kuncheva et al., 2001):

D(x) = arg max
j
Sj(x) (9)

It is easy to see that with dichotomic problems the decision templates are reduced
to two-columns matrices, and the similarity (S1) for the positive class and the similarity
(S2) for the negative class can be computed as 1 minus the normalized squared euclidean
distance:

S1(x) = 1− 1
n

n∑

t=1

[DT1(t, 1)− dt,1(x)]2 (10)

S2(x) = 1− 1
n

n∑

t=1

[DT2(t, 1)− dt,1(x)]2 (11)
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where DT1 is the decision template for the positive and DT2 for the negative class. The
final decision of the ensemble is:

D(x) = arg max
{1,2}

(S1(x),S2(x)) (12)

2.4 Kernel fusion and vector space integration

Kernel fusion (KF) for data integration is based on the closure property of kernels with
respect to the sum or other algebraic operators. For instance, if Ka and Kb are both
kernel functions, K(x, y) = Ka(x, y)+Kb(x, y) is another valid kernel, as well as a weighted
combination of kernels waKa(x, y) + wbKb(x, y), wa ≥ 0, wb ≥ 0.

In our experiments we integrated the different data sets by simply summing their Gram
matrices, and then we trained the SVMs directly with the resulting matrix. Moreover in
Sect. 3.2 we considered also semi-definite programming methods that allow the joint opti-
mization of both the SVM margin and of the weights on each individual kernel (Lanckriet
et al., 2004).

Vector space integration (VSI) consists in concatenating the vectors of the different data
sets (desJardins et al., 1997). The resulting concatenated vectors are used to train a SVM.
Note that training a linear SVM with concatenated vectors (VSI) is equivalent to kernel
fusion with linear kernels. In our experiments we used gaussian kernels.

3. Experimental results

Even if the growing rate of the amount of biomolecular data available for many species
was constantly increasing in the last years, the model organisms with a consistent amount
of literature inherent to data fusion based gene function prediction are actually reduced to
S.cerevisiae and M.musculus. Despite the availability of a well established public benchmark
dataset, such as the one provided during the MouseFunc contest (Pena-Castillo et al.,
2008), a recent comparison between many model organisms showed that the fraction of
genes annotated with experimental evidence is about 30% larger in S.cerevisiae than in
M.musculus (85.4% and 57.8% respectively for the yeast and mouse model organisms, Rhee
et al. (2008)). We thus decided to use yeast data for our experiments. In order to maximize
the effective use of the larger experimental coverage of gene functional annotations available
for the yeast, we also adopted as a reference functional ontology, the MIPS Functional
Catalogue (FunCAT), which is composed by annotations mainly based on experimental
evidences (Ruepp et al., 2004), allowing us to minimize the impact of non experimental
functional annotations.

3.1 Prediction of top-level FunCat classes in yeast

We predicted the top-level 15 functional classes of the FunCat taxonomy of the model or-
ganism S. cerevisiae, using 6 different sources of data (Table 1). Two of the considered
datasets are devoted to the characterization of each gene in terms of the protein-domain
architecture of its protein product (Dpfam1 and Dpfam2). One dataset describes the expres-
sion pattern of the genes in several experimental conditions (Dexpr). The last three data
sources involved in this experiment represent different kinds of relationships between pro-
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Table 1: Datasets
Code Dataset examples features description
Dppi1 PPI - STRING 2338 2559 protein-protein interaction data

from (vonMering et al., 2003)
Dppi2 PPI - BioGRID 4531 5367 protein-protein interaction

data from the BioGRID
database (Stark et al., 2006)

Dpfam1 Protein domain log-E 3529 5724 Pfam protein domains with log E-
values computed by the HMMER
software toolkit

Dpfam2 Protein domain binary 3529 4950 protein domains obtained from
Pfam database (Finn et al., 2008)

Dexpr Gene expression 4532 250 merged data of Spellman and
Gasch experiments

Dseq Pairwise similarity 3527 6349 Smith and Waterman log-E val-
ues between all pairs of yeast se-
quences

teins: experimentally supported (Dppi1) and predicted (Dppi2) protein-protein interactions,
and evolutionary relationships expressed in terms of protein sequence conservation (Dseq).
Each dataset was split into a training set and a test set (composed, respectively, by the 70%
and 30% of the available samples), considering yeast genes common to all data sets (about
1900) and with at least 1 FunCat annotation. A 3-fold stratified cross-validation has been
performed on the training data for model selection, using gaussian SVMs with probabilistic
output (Lin et al., 2007) as base learners for both ensemble methods, and for VSI and KF
data integration. More precisely, we applied a grid search by varying both the C regular-
ization parameter and the σ parameter of the gaussian kernel between 10−3 and 103, in
order to select the best model for each classification task. We compared the performances
of single gaussian SVMs trained on each data set with those obtained with vector-space-
integration (VSI) techniques, kernel fusion through the sum of gaussian kernels, and with
the ensembles described in Sect. 2.

Table 2 shows the average F-measure, recall, precision and AUC across the 15 selected
FunCat classes, obtained through the evaluation of the test sets (each constituted by 570
genes). The four first columns refer respectively to the weighted linear, weighted logarith-
mic, Decision Template and Naive-Bayes ensembles; VSI and KF stands respectively for
vector space integration and kernel fusion, Davg represents the average results of the single
SVMs across the six datasets, and Dppi2 represents the single SVM that achieved the best
performance, i.e. the one trained using protein-protein interactions data collected from Bi-
oGrid. Table 3 shows the same results obtained by each single SVM trained on a specific
biomolecular data set.

Looking at the values presented in Table 2, on the average, data integration through
simple ensemble methods provide better results than single SVMs, VSI and Kernel fusion,
independently of the applied combination rule. In particular, Decision Templates achieved
the best average F-measure, and ensemble methods as a whole the best AUC. Among
the ensemble of classifiers, with respect to the AUC, the worst performing method is the
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Naive-Bayes combiner albeit its performances are still, on the average, higher than the ones
reported for VSI, Kernel fusion and the single classifiers. Precision of the ensemble methods
is relatively high: this is of paramount importance to drive the biological validation of ”in
silico” predicted functional classes: considering the high costs of biological experiments, we
need to obtain a high precision (and possibly recall) to be sure that positive predictions are
actually true with the largest confidence.

To understand whether the differences between AUC scores in the 15 dichotomic tasks
are significant, we applied a non parametric test based on the Mann-Whitney statistic (De-
long et al., 1988), using a recently proposed software implementation (Vergara et al., 2008).
Table 4 shows that at 0.01 significance level in most cases there is no significant difference
between AUC scores of the weighted linear and logarithmic ensembles (Elin and Elog) and
the Decision Template (Edt) combiner. A different behavior is observed for the Naive-Bayes
combiner: its performances are comparable to the ones obtained by the other ensemble
methods only in 2 over 15 classification tasks and worse in the remaining 13.

Most interestingly, ensemble methods significantly outperform the other data integration
methods. For instance, wins-ties-losses of Elin vs V SI are 13− 2− 0, and 9− 6− 0 vs KF ;
Naive-Bayes, the worst performing ensemble method, achieves 9−6−0 wins-ties-losses with
V SI and 5−10−0 with KF . It is worth noting that, among the tested ensemble methods,
Elin, Elog and Edt undergo no losses when compared with single SVMs (Table 4, bottom): we
can safely choose any ensemble method (but not the Naive-Bayes combiner) to obtain equal
or better results than any of the single SVMs. On the contrary in many cases V SI, ENB and
the kernel fusion methods obtained worse results than single SVMs, although performances
achieved by the Naive-Bayes combiner and the kernel fusion methods are, in general, better
than those obtained by VSI. Nevertheless, we can observe that a single SVM trained with
Ppi-2 data achieves good results (11 ties with ensembles and an average AUC ' 0.81 w.r.t.
0.86 of the ensembles, Table 2 and 4), showing that large protein-protein interactions data
sets alone provide information sufficient to correctly predict several FunCat classes.

Figure 1 compares the ROC curves of the different data integration methods used in
our experiments. ROC curves of weighted majority voting (Elin) are consistently above the
corresponding ROC curves of kernel fusion and vector space integration for all the considered
FunCat classes. ROC curves of Naive-Bayes combiner are below those of kernel fusion only

Table 2: Ensemble methods, kernel fusion and vector space integration: average F-score,
recall, precision and AUC (Area Under the Curve) across the data sets.

Metric Elin Elog Edt ENB V SI KF Davg Dppi2

F 0.4347 0.4111 0.5302 0.5174 0.3213 0.3782 0.3544 0.4818
rec 0.3304 0.2974 0.4446 0.6467 0.2260 0.3039 0.2859 0.3970
prec 0.8179 0.8443 0.7034 0.5328 0.6530 0.6293 0.5823 0.6157
AUC 0.8642 0.8653 0.8613 0.7933 0.7238 0.7775 0.7265 0.8170
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Ré and Valentini

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Metabolism

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Energy

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell cycle

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Transcription

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Protein synthesis

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Protein fate

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Binding function

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Metabolism regulation

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cellular transport

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cellular communication

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell rescue

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interaction w. environment

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell fate

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Biogenesis cell. comp.

Elin
ENB

KF
VSI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell differentiation

Elin
ENB

KF
VSI

Figure 1: Comparison of ROC curves between different data integration methods. Elin:
ensemble weighted majority voting; ENB: Naive-Bayes ensemble integration; KF :
kernel fusion; V SI: vector space integration.
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Table 3: Single SVMs: average F-score, recall, precision and AUC. Each SVM is identified
by the same name of the data set used for its training (Table 1).

Metric Dppi1 Dppi2 Dpfam1 Dpfam2 Dexpr Dseq

F 0.3655 0.4818 0.2363 0.3391 0.2098 0.4493
rec 0.2716 0.3970 0.1457 0.2417 0.1571 0.5019
prec 0.6157 0.6785 0.7154 0.6752 0.3922 0.4162
AUC 0.7501 0.8170 0.6952 0.6995 0.6507 0.7469

Table 4: Results of the non-parametric test based on Mann-Whitney statistics to compare
AUCs between ensembles, VSI, Kernel fusion and single SVMs. Each entry rep-
resents wins-ties-losses between the corresponding row and column at 0.01 signifi-
cance level. Top: Comparison between ensemble methods, VSI and kernel fusion;
Bottom: Comparison between data integration methods and single SVMs.

V SI Elog Elin Edt ENB

Elog 13-2-0 - - - -
Elin 13-2-0 0-14-1 - - -
Edt 13-2-0 1-13-1 1-11-3 - -
ENB 9-6-0 0-2-13 0-2-13 0-2-13 -
KF 3-12-0 0-6-9 0-6-9 0-6-9 0-10-5

Dppi1 Dppi2 Dpfam1 Dpfam2 Dexpr Dseq

Elin 11-4-0 4-11-0 15-0-0 14-1-0 15-0-0 13-2-0
Elog 11-4-0 4-11-0 15-0-0 14-1-0 15-0-0 13-2-0
Edt 11-4-0 4-11-0 15-0-0 14-1-0 15-0-0 13-2-0
ENB 5-10-0 2-11-2 9-6-0 8-7-0 12-3-0 7-8-0
V SI 1-11-3 0-8-7 2-11-2 1-14-0 4-11-0 0-12-3
KF 1-14-0 0-9-6 5-10-0 5-10-0 11-4-0 3-12-0

for four classes: “Energy”, “Metabolism”, “Regulation”, “Cell rescue” and “Interaction
with the environment”.

3.2 Predicting GO terms using protein sequence and structural information

To compare our proposed ensemble methods against published results relative to published
benchmark data sets, we chose the sequence and structural protein yeast data available
from Lewis et al. (2006).

Our aim is to compare the results obtained with average kernel fusion (KF) and weighted
average KF through semi-definite programming techniques (KF SDP) published in (Lewis
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Ré and Valentini

et al., 2006) with the results obtained with Weighted linear ensembles and Decision Tem-
plates using the same kernel machines as base learners.

Sequence data are represented through mismatch kernels (Leslie et al., 2003), that con-
stitute a generalization upon the simpler spectrum kernel, which represents a string as a
vector of counts of all possible substrings of a fixed length (Leslie et al., 2002). For structural
data, empirical kernel maps (Scholkopf et al., 2004) have been applied to convert MAM-
MOTH scores to kernels. MAMMOTH (Ortiz et al., 2002) is an algorithm for structural
alignment of proteins; it computes a score that reflects the alignment’s quality. Unfortu-
nately these scores cannot be used directly for kernels because the corresponding Gram
matrix is not positive definite and the empirical kernel map needs to be obtained from the
scores instead.

In the experiments we tried to recognize the same 56 GO terms considered in Lewis
et al. (2006): they come from both the Biological Process, Molecular Function and Cellular
Compartment ontologies. Moreover we adopted the same experimental set-up: 5-fold cross
validation repeated three times, a fixed SVM regularization parameter C = 10 for all the
classification tasks, and the AUC to measure classification performance. Note that for the
average and SDP kernel fusion methods we used the AUC results published in Lewis et al.
(2006).

Results are summarized in Figure 2. Each plot represents the comparison of the AUC
scores between an ensemble and a kernel fusion method across all the 56 protein classification
problems. Most of the points lie above the bisector in Figure 2 b) and d), showing that both
Weighted linear and Decision Templates ensembles tend to outperform the SDP kernel fusion
approach. This is less clear when we compare ensemble methods with the average kernel
fusion technique: indeed while a certain prevalence can be observed for the Weighted linear
ensemble, with Decision Templates the points seem to be quite equally distributed along
the bisector (Figure 2 a and c). These visual clues are confirmed by the Wilcoxon signed-
ranks test (Wilcoxon, 1945): we register a significant difference in favour of Weighted linear
(p-value ' 10−6) and Decision Template (p-value ' 10−5) w.r.t. SDP KF, a significant
difference between Weighted linear and average KF (p-value ' 0.05), but no significant
difference between Decision Templates and average KF (p-value ' 0.29).

4. Conclusions

The main objective of this contribution is to demonstrate that simple ensemble methods
are competitive with state-of-the-art methods for gene function prediction based on hetero-
geneous biomolecular data integration.

It is well-known that gene function prediction methods need to take into account the
hierarchical relationships between classes to improve their predictions (Guan et al., 2008;
Obozinski et al., 2008; Valentini and Re, 2009; Valentini, 2010). Nevertheless, in this in-
vestigation we focused on data integration, in order to study the improvement due to the
usage of multiple sources of data, without exploiting any knowledge about the hierarchical
relationships between classes. In this way we can separate the contribution due to data
fusion techniques from the improvement due to hierarchical methods.

Considering the increasing growing rate of available biomolecular data, the modularity
and scalability that characterize ensemble methods can favour an easy update of existing
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Figure 2: Comparison of AUC results between kernel fusion and ensemble data integration
methods. Points represent the AUC score of kernel fusion (abscissa) and ensemble
(ordinate) methods for 56 GO terms. (a) Average KF vs Weighted ensembles (b)
SDP KF vs Weighted ensembles (c) Average KF vs Decision Templates (d) SDP
KF vs Decision Templates.

sources of data and an easy integration of new ones. Our experiments show that relatively
simple ensemble methods are competitive with kernel fusion and vector space integration,
two of the most largely applied machine learning data integration techniques for gene func-
tion prediction. This could seem quite surprising, but considering the uncertainty that

11
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characterize both annotations and measurements of data values, we can expect that rela-
tively simple methods are able to nicely work in a similar context. Moreover it is worth
noting that each type of data can only capture a particular characteristic of a protein,
and for different functional classes the same type of data can be highly informative or
completely unuseful to discriminate positive and negative examples. For these reasons the
inherent modularity and adaptivity of ensemble systems can explain their effectiveness for
the integration of multiple biomolecular data sources. In particular we think that ensemble
methods devoted to biomolecular data integration can be a valuable research line to improve
the accuracy of gene function prediction problems.
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