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Abstract. In this work we propose an artificial model for the generation
of biologically plausible gene expression data to be used in the evaluation
of the performance of gene selection and clustering methods.
The model allows to fix in advance the set of relevant genes and the
functional classes involved in the problem; the input-output relationship
is constructed by synthesizing a positive Boolean function. Despite its
simplicity, it is sufficiently rich to take account of the specific peculiarities
of gene expression data, including biological variability.
A Java code had been developed to allow the user choose the model pa-
rameters according to the characteristics of the experiment he want to
simulate. This permits to insert the artificial model into a distributed
system for microarray analysis, in particular one based on a Grid infras-
tructure.

1 Introduction

A unique possibility of understanding mechanisms regulating biological pro-
cesses, such as the onset of a disease or the effects of a drug [2], is offered
by DNA microarrays, which provide the expression level for thousands of genes
pertaining to a given tissue.

Supervised and unsupervised machine learning and statistical methods have
been largely applied to the analysis of gene expression data [6, 7, 9, 10] and, in
some situations, the quality of the solution offered by a given technique can be
easily evaluated. In other problems, instead, the performance of a statistic or of
a learning method cannot be assessed since the correct solution is not available,
even in a subset of cases.

For instance, gene selection methods, where the subset of genes involved in a
biological process of interest is to be determined from a collection of microarray
experiments, cannot be evaluated since the entire set of genes involved in a
specific biological process is usually unknown or only partially known.

Other important problems, such as the discovery of new subclasses of dis-
eases detected at bio-molecular level may be formalized as unsupervised clus-
tering problems [1, 8]. However, besides the fact that unsupervised clustering is



in general an ill-posed problem, in this case no a priori solutions are known in
advance, as the “real” bio-molecular classes are usually unknown.

To provide some kind of performance evaluation, several models have been
proposed to produce synthetic gene expression data for classification, clustering
and gene selection problems [3, 11]. Even if in principle they may be helpful
to test gene selection methods, their main limitation consists in a drastic sim-
plification of the model, which is not sufficiently rich to take into account the
peculiarities of gene expression data.

Our model describes the relationship between the expression levels of the
genes of a virtual tissue and its functional state. In this way it is possible to
design an artificial system for a genome-wide synthesis of gene expression data.
In particular, the randomness due to biological variability and measurement
errors is gathered in a specific term, whereas the deterministic part of the model
has been implemented by a positive Boolean function acting on relevant genes.

Furthermore, a convenient manner of writing this kind of functions consists
in employing m-of-n expressions, which are able to capture the main biological
characteristics of gene expression, while maintaining a sufficient simplicity. The
numerical experiments included in the following section show how to apply the
proposed model to the analysis of the performances of largely used statistical
and machine learning gene selection methods.

2 Example of gene selection method evaluation

We can associate to each DNA microarray experiment a pair (x, y), where x
is a real-valued input vector whose components represent the gene expression
levels for the corresponding tissue, whereas the output y can vary into a set
of 2 different values (1 and −1), each denoting the class which the associated
tissue belongs to; a generalization of the analysis to more than two classes is
straightforward.

Our mathematical model can be adopted to describe each of the two func-
tional states defining the classes above. Two subsequent phases have been de-
vised: in the first one the two functions f1 and f2, describing the relationship
between the expression level of genes and the two possible functional state of a
tissue, are built, whereas in the second one the gene expression levels of n virtual
tissues are generated.

Randomness inherent the determination of the functional state can be col-
lected into a real parameter e, so that with probability 1− e each virtual tissue
belonging to the output class 1 (resp. −1) has gene expression levels forming a
vector x verifying f1(x) = 1 (resp. f2(x) = 1). If classes are mutually exclusive
(as it is usually the case), it should be guaranteed that each tissue belongs to
only one functional state, i.e. if x is the associated input vector only one model
provides the output 1.

The collection of virtual tissues generated by the model can be collected
into a matrix X, where each row corresponds to a tissue and each column to
a gene. Then, a final column Y representing the class of each tissue is added.



Feature selection and clustering methods can be applied to Z = [X, Y ] and
X respectively. However, since both the rule determining the membership of a
tissue to a class and the relationship among the virtual genes are completely
known, these methods can be directly tested and their performances can be
easily evaluated.

As an example, we compare two feature selection methods, the technique
proposed by Golub et al. in [4] (a simple variation of the classic t-test) and
the SVM-RFE procedure [5], on two different collections of examples built by
adopting the proposed model. The evaluation of the performances of the two
methods has been performed by counting how many relevant genes, actually
belonging to the expression profile, are found.

The first dataset X1 is composed by 100 artificial tissues, 60 belonging to the
first class and 40 in the second class, with 6000 virtual genes. The expression
profiles of the two functional states, represented by the functions f1 and f2,
contain 144 genes in total. For both the functional states the parameter e has
been fixed to 0.1.

Both the Golub’s method and SVM-RFE have been applied to the complete
dataset Z1 = [X1, Y1], being Y1 the vector containing the labels y of the class of
each tissue x (y = 1 if f1(x) = 1 or y = −1 if f2(x) = 1). Each gene selection
method assigns a rank value to each of the 6000 genes: the higher is the rank
the more relevant is the corresponding gene. The first 144 genes with greater
rank values are then compared with the 144 genes actually belonging to the two
expression profiles.

If we denote with G144 and S144 the set of the 144 most relevant genes
selected by Golub’s method and by SVM-RFE, respectively, we can evaluate
the intersections between G144 or S144 and the set M144 of the genes included
in the two expression profiles. The greater is the size of the intersection, the
better is the performance of the gene selection method. A relative measure of
this term is given by the fraction PG (resp. PS) of relevant genes contained in
G144 (resp. R144).

The results show that

PG =
|G144 ∩M144|

|M144| =
132
144

= 0.92

and

PS =
|S144 ∩M144|

|M144| =
24
144

= 0.17

having denoted with |A| the cardinality (number of elements) of the set A. The
comparison between the values of PG and PS shows that in this artificial dataset
the behavior of the Golub’s method is significantly better than that of SVM-
RFE. In particular, the former is able to retrieve most (92%) of the relevant
genes.

The application of the same approach to a second artificial dataset may help
to understand if this result has a more general validity. To this aim a new data
matrix Z2 = [X2, Y2] has been generated, where X2 contains 80 virtual tissues



(50 belonging to the first class and 30 to the second class) and 2500 virtual genes.
The value of the parameter e has been fixed to 0.05.

Since, in this case, the total number of genes belonging to the two expression
profiles is 133, we consider the sets G133 and S133 obtained by applying the
Golub’s method and SVM-RFE, respectively, to the dataset Z2 and by taking the
133 genes with highest rank for both methods. In this way, we can again compute
the quantities PG and PS , given by the fraction of relevant genes included in G133

and S133:

PG =
|G133 ∩M133|

|M133| =
124
133

= 0.93

while

PS =
|S133 ∩M133|

|M133| =
39
133

= 0.29

M133 is the set of the relevant genes adopted for the construction of the expres-
sions of f1 and f2. As one can note, also in this case the Golub’s method achieves
by far the best performance.

3 Conclusions

An artificial model for the generation of biologically plausible gene expression
data, to be adopted in the evaluation of gene selection and clustering methods,
has been proposed.

An application of the proposed artificial model in evaluating the perfor-
mances of two gene selection techniques, Golub’s method [4] and SVM-RFE
[5], has been also presented. The analysis of two artificial datasets, where the
collection of relevant genes is considerably smaller than the whole set of genes
characterizing the virtual tissue, has permitted to derive that the Golub’s method
performs significantly better than SVM-RFE, being able to retrieve more than
90% of the relevant genes.

The behavior of the proposed model is affected by a collection of parameters,
which can be properly fixed by the user to produce a set of data having a high
degree of similarity with a specific experiment of interest. A Java program assists
the user in the construction of the artificial model and in the generation of the
final sample of data.

Due to its flexibility this software can be directly inserted into a distributed
environment for microarray analysis, possibly based on a Grid infrastructure.
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