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Abstract

Background: Cluster analysis has been widely applied for investigating structure in bio-molecular data. A drawback
of most clustering algorithms is that they cannot automatically detect the ”natural” number of clusters underlying
the data, and in many cases we have no enough ”a priori” biological knowledge to evaluate both the number of
clusters as well as their validity. Recently several methods based on the concept of stability have been proposed
to estimate the ”optimal” number of clusters, but despite their successful application to the analysis of complex
bio-molecular data, the assessment of the statistical significance of the discovered clustering solutions and the
detection of multiple structures simultaneously present in high-dimensional bio-molecular data are still major
problems.

Results: We propose a stability method based on randomized maps that exploits the high-dimensionality and
relatively low cardinality that characterize bio-molecular data, by selecting subsets of randomized linear combina-
tions of the input variables, and by using stability indices based on the overall distribution of similarity measures
between multiple pairs of clusterings performed on the randomly projected data. A χ2-based statistical test is
proposed to assess the significance of the clustering solutions and to detect significant and if possible multi-level
structures simultaneously present in the data (e.g. hierarchical structures).

Conclusions: The experimental results show that our model order selection methods are competitive with other
state-of-the-art stability based algorithms and are able to detect multiple levels of structure underlying both
synthetic and gene expression data.

Background

Unsupervised clustering algorithms play a crucial
role in the exploration and identification of struc-
tures underlying complex bio-molecular data, rang-
ing from transcriptomics to proteomics and func-
tional genomics [1–4].

Unfortunately, clustering algorithms may find
structure in the data, even when no structure is
present instead. Moreover, even if we choose an ap-

propriate clustering algorithm for the given data, we
need to assess the reliability of the discovered clus-
ters, and to solve the model order selection problem,
that is the proper selection of the ”natural” number
of clusters underlying the data [5, 6]. From a ma-
chine learning standpoint, this is an intrinsically ”ill-
posed” problem, since in unsupervised learning we
lack an external objective criterion, that is we have
not an equivalent of a priori known class label as in
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supervised learning, and hence the evaluation of the
reliability of the discovered classes becomes elusive
and difficult. From a biological standpoint, in many
cases we have no sufficient biological knowledge to
”a priori” evaluate both the number of clusters (e.g.
the number of biologically distinct tumor classes),
as well as the validity of the discovered clusters (e.g.
the reliability of new discovered tumor classes) [7].

To deal with these problems, several methods for
assessing the validity of the discovered clusters and
to test the existence of biologically meaningful clus-
ters have been proposed (see [8] for a review).

Recently, several methods based on the concept
of stability have been proposed to estimate the ”op-
timal” number of clusters in complex bio-molecular
data [9–11]. In this conceptual framework multi-
ple clusterings are obtained by introducing pertur-
bations into the original data, and a clustering is
considered reliable if it is approximately maintained
across multiple perturbations.

Different procedures have been introduced to
randomly perturb the data, ranging from bootstrap-
ping techniques [9,12,13], to noise injection into the
data [14] or random projections into lower dimen-
sional subspaces [15,16].

In particular, Smolkin and Gosh [17] applied
an unsupervised version of the random subspace
method [18] to estimate the stability of cluster-
ing solutions. By this approach, subsets of features
are randomly selected multiple times, and cluster-
ings obtained on the corresponding projected sub-
spaces are compared with the clustering obtained in
the original space to assess its stability. Even if this
approach gives useful information about the reliabil-
ity of high-dimensional clusterings, we showed that
random subspace projections may induce large dis-
tortions in gene expression data, thus obscuring their
real structure [15]. Moreover, a major problem with
data perturbations obtained through random pro-
jections from a higher to a lower dimensional space
is the choice of the dimension of the projected sub-
space.

In this paper we extend the Smolkin and Gosh
approach to more general randomized maps from
higher to lower-dimensional subspaces, in order to
reduce the distortion induced by random projec-
tions. Moreover, we introduce a principled method
based on the Johnson and Lindenstrauss lemma [19]
to properly choose the dimension of the projected
subspace. Our proposed stability indices are related
to those proposed by Ben-Hur et al. [13]: their sta-

bility measures are obtained from the distribution of
similarity measures across multiple pairs of clustered
data perturbed through resampling techniques. In
this work we propose stability indices that depend
on the distribution of the similarity measures be-
tween pairs of clusterings, but data perturbation
is realized through random projections to lower di-
mensional subspaces, in order to exploit the high-
dimensionality of bio-molecular data.

Another major problem related to stability-based
methods is to estimate the statistical significance of
the structures discovered by clustering algorithms.
To face this problem we propose a χ2-based sta-
tistical test that may be applied to any stability
method based on the distribution of similarity mea-
sures between pairs of clusterings. We experimen-
tally show that by this approach we may discover
multiple structures simultaneously present in the
data (e.g. hierarchical structures), associating a p-
value to the clusterings selected by a given stability-
based method for model order selection.

Methods
In this section we present our approach to stability-
based model order selection, considering randomized
maps with bounded distortion to perturb the data,
stability indices based on the distribution of the clus-
tering similarity measures, and finally we present
our χ2-based test for assessing the significance of the
clustering solutions.

Data perturbations using randomized maps with
bounded distortions

A major requirement for clustering algorithms is the
reproducibility of their solutions with other data sets
drawn from the same source; this is particularly true
with bio-molecular data, where the robustness of the
solutions is of paramount importance in bio-medical
applications. From this standpoint the reliability of
a clustering solution is tied to its stability: we may
consider reliable a cluster if it is stable, that is if it is
maintained across multiple data sets drawn from the
same source. In real cases, however, we may dispose
only of limited data, and hence we need to intro-
duce multiple ”small” perturbations into the original
data to simulate multiple ”similar” samples from the
same underlying unknown distribution. By applying
appropriate indices based on similarity measures be-
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tween clusterings we can then estimate the stability
and hence the reliability of the clustering solutions.

We propose to perturb the original data us-
ing random projections µ : Rd → Rd′ from high
d-dimensional spaces to lower d′-dimensional sub-
spaces. A related approach is presented in [17],
where the authors proposed to perturb the data ran-
domly choosing a subset of the original features (ran-
dom subspace projection [18]); the authors did not
propose any principled method to choose the dimen-
sion of the projected subspace, but a key problem
consists in finding a d′ such that for every pair of
data p, q ∈ Rd, the distances between the projections
µ(p) and µ(q) are approximately preserved with high
probability. A natural measure of the approximation
is the distortion distµ:

distµ(p, q) =
||µ(p)− µ(q)||2
||p− q||2 (1)

If distµ(p, q) = 1, the distances are preserved; if
1−ε ≤ distµ(p, q) ≤ 1+ε, we say that an ε-distortion
level is introduced.

In [15] we experimentally showed that random
subspace projections used in [17] may introduce large
distortions into gene expression data, thus introduc-
ing bias into stability indices based on this kind of
random projections. For these reasons we propose to
apply randomized maps with guaranteed low distor-
tions, according to the Johnson-Lindenstrauss (JL)
lemma [19], that we restate in the following way:

Given a d-dimensional data set D =
{p1, p2, . . . , pn} ⊂ Rd and a distortion level ε, ran-
domly choosing a d′-dimensional subspace S ⊂ Rd,
with d′ = c log n/ε2, where c is a suitable constant,
with high probability (say ≥ 0.95) the random pro-
jection µ : Rd → S verifies 1 − ε ≤ distµ(pi, pj) ≤
1 + ε for all pi 6= pj .

In practice, using randomized maps that obey
the JL lemma, we may perturb the data introducing
only bounded distortions, approximately preserving
the metric structure of the original data [15]. Note
that the dimension of the projected subspace de-
pends only on the cardinality of the original data
and the desired ε-distortion, and not from the di-
mension d of the original space.

The embedding exhibited in [19] consists in pro-
jections from Rd in random d′-dimensional sub-
spaces. Similar results may be obtained by using
simpler maps [20, 21], represented through random
d′×d matrices R = 1/

√
d′(rij), where rij are random

variables such that:

E[rij ] = 0, V ar[rij ] = 1

Strictly speaking, these are not projections, but for
sake of simplicity, we call random projections even
this kind of embeddings. Examples of random pro-
jections are the following:

1. Bernoulli random projections: represented by
d′ × d matrices R = 1/

√
d′(rij), where rij

are uniformly chosen in {−1, 1}, such that
Prob(rij = 1) = Prob(rij = −1) = 1/2 (that
is the rij are Bernoulli random variables). In
this case the JL lemma holds with c ' 4.

2. Achlioptas random projections [20]: repre-
sented by d′ × d matrices P = 1/

√
d′(rij),

where rij are chosen in {−√3, 0,
√

3}, such
that Prob(rij = 0) = 2/3, Prob(rij =

√
3) =

Prob(rij = −√3) = 1/6. In this case also we
have E[rij ] = 0 and V ar[rij ] = 1 and the JL
lemma holds.

3. Normal random projections [21, 22]: this JL
lemma compliant randomized map is repre-
sented by a d′ × d matrix R = 1/

√
d′(rij),

where rij are distributed according to a gaus-
sian with 0 mean and unit variance.

4. Random Subspace (RS) [17, 18]: represented
by d′ × d matrices R =

√
d/d′(rij), where rij

are uniformly chosen with entries in {0, 1}, and
with exactly one 1 per row and at most one 1
per column. Unfortunately, RS does not sat-
isfy the JL lemma.

Using the above randomized maps (with the ex-
ception of RS projections), the JL lemma guaran-
tees that, with high probability, the ”compressed”
examples of the data set represented by the ma-
trix DR = RD have approximately the same dis-
tance (up to a ε-distortion level) of the corresponding
examples in the original space, represented by the
columns of the matrix D, as long as d′ ≥ c log n/ε2.

We propose a general MOSRAM (Model Or-
der Selection by RAndomized Maps) algorithmic
scheme, that implements the above ideas about ran-
dom projection with bounded distortions to generate
a set of similarity indices of clusterings obtained by
pairs of randomly projected data. The main differ-
ence with respect to the method proposed in [13] is
that by our approach we perturb the original data
using a randomized mapping µ : Rd → Rd′ :
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MOSRAM algorithm:
Input:

D : a dataset;
kmax: max number of clusters;
m : number of similarity measures;
µ : a randomized map;
C: a clustering algorithm;
sim : a clustering similarity measure.

Output:
M(i, k): a bidimensional list of similarity mea-

sures for each k (1 ≤ i ≤ m, 2 ≤ k ≤ kmax)
begin

for k := 2 to kmax

for i := 1 to m
begin

proja := µ(D)
projb := µ(D)
Ca := C(proja, k)
Cb := C(projb, k)
M(i, k) := sim(Ca, Cb)

end
end.

The algorithm computes m similarity measures
for each desired number of clusters k. Every mea-
sure is achieved by applying sim to the clustering Ca

and Cb, outputs of the clustering algorithm C, having
as input k and the projected data proja and projb.
These data are generated through randomized maps
µ, with a desired distortion level ε. It is worth not-
ing that we make no assumptions about the shape
of the clusters, and in principle any clustering algo-
rithm C, randomized map µ, and clustering similar-
ity measure sim may be used (e.g. the Jaccard or
the Fowlkes and Mallows coefficients [23]).

Stability indices based on the distribution of the
similarity measures

Using the similarity measures obtained through the
MOSRAM algorithm, we may compute stability in-
dices to assess the reliability of clustering solutions.

More precisely, let C be a clustering algorithm,
ρ a random perturbation procedure (e.g. a resam-
pling or a random projection) and sim a suitable
similarity measure between two clusterings (e.g. the
Fowlkes and Mallows similarity).

We may define the random variable Sk, 0 ≤ Sk ≤
1:

Sk = sim (C(D1, k), C(D2, k)) (2)

where D1 = ρ(1)(D) and D2 = ρ(2)(D) are obtained

through random and independent perturbations of
the data set D; the intuitive idea is that if Sk is con-
centrated close to 1, the corresponding clustering is
stable with respect to a given controlled perturba-
tion and hence it is reliable.

Let fk(s) be the density function of Sk and Fk(s)
its cumulative distribution function. A parameter of
concentration implicitly used in [13] is the integral
g(k) of the cumulative distribution:

g(k) =
∫ 1

0

Fk(s)ds (3)

Note that if Sk is centered in 1, g(k) is close to 0,
and hence it can be used as a measure of stability.

Moreover, the following facts show that g(k) is
strictly related to both the expectation E[Sk] and
the variance V ar[Sk] of the random variable Sk:

Fact 1: E[Sk] = 1− g(k).
Indeed, integrating by parts:

E[Sk] =
∫ 1

0

sfk(s)ds =
∫ 1

0

sF ′k(s)ds =

= 1−
∫ 1

0

Fk(s)ds = 1− g(k) (4)

Fact 2: V ar[Sk] ≤ g(k)(1− g(k).
Since 0 ≤ Sk ≤ 1 it follows S2

k ≤ Sk; therefore, using
Fact 1:

V ar[Sk] = E[S2
k]− E[Sk]2 ≤ E[Sk]− E[Sk]2 =

= g(k)(1− g(k)) (5)

In conclusion, g(k) ' 0 then E[Sk] ' 1 and
V ar[Sk] = 0, i.e. Sk is centered close to 1. As a
consequence, E[Sk] can be used as an index of the
reliability of the k-clustering: if E[Sk] ' 1, the clus-
tering is stable, if E[Sk] ¿ 1 the clustering can be
considered less reliable.

We can estimate E[Sk] by means of m similar-
ity measures M(i, k) (1 ≤ i ≤ m) computed by the
MOSRAM algorithm. In fact E[Sk] may be esti-
mated by the empirical mean ξk:

ξk =
m∑

i=1

M(i, k)
m

(6)

A χ2-based test for the assessment of the signifi-
cance of the solutions
In this section we propose a method for automati-
cally finding the ”optimal” number of clusters and
to detect significant and possibly multi-level struc-
tures simultaneously present in the data. First of all,
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let us consider the vector (ξ2, ξ3, . . . , ξH+1) (eq. 6)
computed by using the output of the MOSRAM al-
gorithm. We may perform a sorting of this vector:

(ξ2, ξ3, . . . , ξH+1)
sort→ (ξp(1), ξp(2), . . . , ξp(H)) (7)

where p is the permutation index such that ξp(1) ≥
ξp(2) ≥ . . . ≥ ξp(H). Roughly speaking, this ordering
represents the ”most reliable” p(1)-clustering down
to the least reliable p(H)-clustering; exploiting this
we would establish which are the significant cluster-
ings (if any) discovered in the data.

To this end, for each k ∈ K = {2, 3, . . . , H + 1},
let us consider the random variable Sk defined in
eq. 2, whose expectation is our proposed stability
index. For all k and for a fixed threshold to ∈ [0, 1]
consider the Bernoulli random variable Bk = I(Sk >
to), where I is the indicator function: I(P ) = 1
if P is True, I(P ) = 0 if P is False. The sum
Xk =

∑m
j=1 Bj

k of i.i.d. copies of Bk is distributed
according to a binomial distribution with parameters
m and θk = Prob(I(Sk > to)).

If we hypothesize that all the binomial popula-
tions are independently drawn from the same distri-
bution (i.e. θk = θ, for all k ∈ K), for sufficiently
large values of m the random variables Xk−mθk√

mθk(1−θk)

are independent and approximately normally dis-
tributed. Consider now the random variable:

∑

k∈K

(Xk −mθ̂)2

mθ(1− θ)
with θ̂ =

∑
k∈KXk

|K| ·m (8)

This variable is known to be distributed as a χ2 with
|K| − 1 degrees of freedom, informally because the
constraint θ̂ between the random variables Xk, k ∈ K
introduces a dependence between them, thus leading
to a loss of one degree of freedom. By estimating the
variance mθ(1− θ) with the statistic mθ̂(1− θ̂), we
conclude that the following statistic

Y =
∑

k∈K

(Xk −mθ̂)2

mθ̂(1− θ̂)
∼ χ2

|K|−1 (9)

is approximately distributed according to χ2
|K|−1

(see, e.g. [24] chapter 12, or [25] chapter 30 for more
details).

A realization xk of the random variable Xk (and
the corresponding realization y of Y ) can be com-
puted by using the output of the MOSRAM algo-
rithm:

xk =
m∑

i=1

I(M(i, k) > to) (10)

Using y, we can test the following alternative hy-
potheses:

• Ho: all the θk are equal to θ (the considered
set of k-clusterings are equally reliable)

• Ha: the θk are not all equal between them (the
considered set of k-clusterings are not equally
reliable)

If y ≥ χ2
α,|K|−1 we may reject the null hypothesis

at α significance level, that is we may conclude that
with probability 1 − α the considered proportions
are different, and hence that at least one k-clustering
significantly differs from the others.

Using the above statistical test, we propose an it-
erative procedure to detect the significant number(s)
of clusterings:

1. Consider the ordered vector ξ =
(ξp(1), ξp(2), . . . , ξp(H))

2. Repeat the χ2-based test until no significant
difference is detected or the only remaining
clustering is p(1) (the top-ranked one). At
each iteration, if a significant difference is de-
tected, remove the bottom-ranked clustering
from ξ

The output of the proposed procedure is the set of
the remaining (top sorted) k-clusterings that corre-
spond to the set of the estimate stable number of
clusters (at α significance level). Equivalently, fol-
lowing the sorting of ξ, we may compute the p-value
(probability of committing an error if we reject the
null hypothesis) for all the ordered groups of cluster-
ings from the p(1)...p(H) to the the p(1), p(2) group,
each time removing the bottom ranked clustering
from the ξ vector. Note that if the set of the re-
maining top-ranked clusterings contains more than
one clustering, we may find multiple structures si-
multaneously present in the data (at α significance
level).

Results and Discussion
We present experiments with synthetic and gene ex-
pression data to show the effectiveness of our ap-
proach. At first, using synthetic data, we show that
our proposed methods can detect not only the ”cor-
rect” number of clusters, but also multiple structures
underlying the data. Then we apply our MOSRAM
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algorithm to discover the ”natural” number of clus-
ters in gene expression data, and we compare the re-
sults with other algorithms for model order selection.
In our experiments we used the classical k-means [26]
and Prediction Around Medoid (PAM) [27] clustering
algorithms, and we applied the Bernoulli, Achlioptas
and Normal random projections, but in this section
we show only the results obtained with Bernoulli
projections, since with the other randomized maps
we achieved the same results without any signifi-
cant difference. In all our experiments we set the
threshold to (see Section ”A χ2-based test for the as-
sessment of the significance of the solutions” to 0.9.
Moreover we applied our proposed χ2-based proce-
dure to individuate sets of significant k-clusterings
into the data. The methods and algorithms de-
scribed in this paper have been implemented in the
mosclust R package, publicly available at [28].

Detection of multiple levels of structure in syn-
thetic data

To show the ability of our method to discover mul-
tiple structures simultaneously present in the data,
we propose an experiment with a 1000-dimensional
synthetic multivariate gaussian data set (sample1)
with relatively low cardinality (60 examples), char-
acterized by a two-level hierarchical structure, high-
lighted by the projection of the data into the two
main principal components (Figure 1): indeed a two-
level structure, with respectively 2 and 6 clusters is
self-evident in the data.

Two clusterings (using the Prediction Around
Medoid algorithm) are detected at 10−4 significance
level by applying our MOSRAM algorithm and the
proposed χ2-based statistical procedure. In particu-
lar we performed 100 pairs of Bernoulli projections
with a distortion bounded to 1.2 (ε = 0.2), yielding
to random projections from 1000 to 479-dimensional
subspaces. Indeed Table 1 reports the sorted means
of the stability measures together with their variance
and the corresponding p-values computed according
to the proposed χ2-based statistical test, showing
that 2 and 6-clusterings are the best scored, as well
as the most significant k-clusterings discovered in the
data. This situation is depicted in Figure 2, where
the histograms of the similarity measures for k = 2
and k = 6 clusters are tightly concentrated near
1, showing that these clusterings are very stable,
while for other values of k the similarity measures
are spread across multiple values. Note that the p-

values of Table 1 (as well as the p-values of Table 2
and 3) refer to the probability of committing an er-
ror if we reject the null hypothesis. The clusterings
with p ≥ α are considered equally reliable (in this
case the null hypothesis cannot be rejected), while
the clusterings for which p < α are considered less
reliable (at α significance level).

Experiments with DNA microarray data

To show the effectiveness of our methods with gene
expression data we applied MOSRAM and the pro-
posed statistical test to Leukemia [29] and Lym-
phoma [1] samples. These data sets have been an-
alyzed with other model order selection algorithms
previously proposed [10, 13, 30–32]: at the end of
this section we compare the results obtained with
the cited methods with our proposed MOSRAM al-
gorithm.

Leukemia

This well known data set [29] is composed by
72 leukemia samples analyzed with oligonucleotide
Affymetrix microarrays. The Leukemia data set is
composed by a group of 25 acute myeloid leukemia
(AML) samples and another group of 47 acute lym-
phoblastic leukemia (ALL) samples, that can be sub-
divided into 38 B-Cell and 9 T-Cell subgroups, re-
sulting in a two-level hierarchical structure.

We applied the same pre-processing steps per-
formed by the authors of the Leukemia study [29],
obtaining 3571 genes from the original 7129 gene ex-
pression values. We further selected the 100 genes
with the highest variance across samples, since low
variance genes are unlikely to be informative for the
purpose of clustering [10,31]. We analyzed both the
3571-dimensional data and the data restricted to the
100 genes with highest variance, using respectively
Bernoulli projections with ε ∈ {0.1, 0.2, 0.3, 0.4} and
projections to 80-dimensional subspaces. In both
cases the k-means clustering algorithm has been ap-
plied.

Figure 3 summarizes the results using gene ex-
pression levels of the genes with highest variance.
Table 2 reports the sorted means of the stability
measures together with their variance and the cor-
responding p-values computed according to the pro-
posed χ2-based statistical test. By these results 2
and 3 clusters are correctly predicted at α = 10−5

significance level. Indeed the empirical means of
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the stability measures (eq. 6) for 2 and 3 clusters
are quite similar and the corresponding lines (black
and red) of the empirical cumulative distributions
(ecdfs) cross several times, while the other ecdfs are
clearly apart from them (Figure 3). The same re-
sults are approximately obtained also using the 3571-
dimensional data with random projections to 428-
dimensional subspaces (ε = 0.2), but 2 and 3 clusters
are predicted at α = 10−13 significance level. Simi-
lar results are also achieved with ε = 0.1 and ε = 0.3,
while with ε = 0.4 the results are less reliable due
to the relatively large distortion induced (data not
shown). Also using the PAM [27] and hierarchical
clustering algorithms with the Ward method [33] we
obtained a two-level structure with 2 and 3 clusters
at α = 10−5 significance level.

Lymphoma

Three different lymphoid malignancies are repre-
sented in the Lymphoma gene expression data set [1]:
Diffuse Large B-Cell Lymphoma (DLBCL), Follic-
ular Lymphoma (FL) and Chronic Lymphocytic
Leukemia (CLL). The gene expression measure-
ments are obtained with a cDNA microarray spe-
cialized for genes related to lymphoid diseases, the
Lymphochip, which provides expression levels for
4026 genes [34]. The 62 available samples are sub-
divided in 42 DLBCL, 11 CLL and 9 FL. We per-
formed pre-processing of the data according to [1],
replacing missing values with 0 and then normaliz-
ing the data to zero mean and unit variance across
genes. As a final step, according to [10], we fur-
ther selected the 200 genes with highest variance
across samples, obtaining a resulting data set with
62 samples and 200 genes. As in the previous exper-
iment, we processed both the high-dimensional orig-
inal data and the data with the reduced set of high-
variance genes, using respectively Bernoulli projec-
tions with ε ∈ {0.1, 0.2, 0.3, 0.4} and projections to
160-dimensional subspaces. The k-means clustering
algorithm has been applied.

The results with highest variance genes are sum-
marized in Figure 4 and Table 3. The statistical
test identifies as significant only the 2-clustering. In-
deed, looking at the ecdf of the stability index val-
ues (left), the 2-clustering (black) is clearly sepa-
rated from the others. The 3 (red) and 4-clustering
(green) graphs, are quite distinct from the others, as
shown also by the corresponding empirical mean of
the stability index values (Figure 4), but they are

also clearly separated from the 2-clustering curve.
Accordingly, our proposed χ2-based test found a sig-
nificant difference between the 2-clustering and all
the others. Similar results are obtained also with
hierarchical clustering and PAM algorithms. Using
all the 4026 genes and Bernoulli random projections
to 413-dimensional (ε = 0.2) subspaces with the
Ward’s hierarchical clustering algorithm our method
finds as significant the 3-clustering as well as the 2-
clustering. In this case also similar results are ob-
tained with ε = 0.1 and ε = 0.3. It is worth not-
ing that the subdivision of Lymphoma samples in 3
classes (DLBCL, CLL and FL) have been defined
on histopathological and morphological basis and it
has been shown that this classification does not cor-
respond to the bio-molecular characteristics and to
clinical outcome classes of non Hodgkin lymphomas.
In particular studies based on the gene expression
signatures of the DLBCL patients [1] and on their
supervised analysis [35], showed the existence of two
subclasses of DLBCLs. Moreover Shipp et al. [36]
highlighted that FL patients frequently evolve over
time and acquire the clinical features of DLBCLs,
and Lange et al. [10] found that a 3-clustering so-
lution groups together FL, CLL and a subgroup of
DLBCLs, while another subgroup of DLBCLs sets
up another cluster, even if the overall stability of the
clustering is lower with respect to the 2-clustering so-
lution. The relationships between FL and subgroups
of DLBCL patients are confirmed also by recent
studies on the individual stability of the clusters in
DLBCL and FL patients [15]. These considerations
show also that the stability analysis of patients clus-
ters in DNA microarray analysis are only the first
step to discover significant subclasses of pathologies
at bio-molecular level, while another necessary step
is represented by the bio-medical validation.

Comparison with other methods

We compared the results obtained by the MOSRAM
algorithm with other model order selection meth-
ods using the Leukemia and Lymphoma data sets
analyzed in the previous section. In particular we
focused our comparison with other state-of-the-art
stability-based methods proposed in the literature.

The Model Explorer algorithm adopts subsam-
pling techniques to perturb the data (data are ran-
domly drawn without replacement) and applies sta-
bility measures based on the empirical distribution
of the stability measures [13]. This approach is quite
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similar to ours but we applied random projections
to perturb the data and a statistical test to iden-
tify significant numbers of clusters, instead of sim-
ply qualitatively looking at the distributions of the
stability indices. The Figure of Merit measure is
based on a resampling approach too, but the sta-
bility of the solutions is assessed directly compar-
ing the solution obtained on the full sample with
that obtained on the subsamples [32]. We consid-
ered also stability-based methods that apply super-
vised algorithms to assess the quality of the discov-
ered clusterings instead of comparing pairs of per-
turbed clusterings [10, 31]: the main differences be-
tween these last approaches are the choice of the
supervised predictor and other parameters (no guid-
ance is given in [31], while in [10] a more structured
approach is proposed). Finally we considered also a
non-stability-based method, the Gap statistic, that
applies an estimates of the gap between the total
sum within-class dissimilarities and a null reference
distribution (the uniform distribution on the small-
est hyper-rectangle that contains all the data) to as-
sess the ”optimal” number of clusters in the data.

Table 4 shows the number of clusters selected
by the different methods, as well as their ”true”
number. The ”true” number is estimated accord-
ing to the a priori biological knowledge about the
data [1, 29] (see Section Experiments with DNA mi-
croarray data). The best results achieved with the
two gene expression data sets are highlighted with
a bounding box. The MOSRAM algorithm achieves
results competitive with the other state-of-the-art
model order selection methods. Indeed MOSRAM
correctly predicts the ”true” number of clusters with
the Leukemia data set and partially with the Lym-
phoma data set. Note that the 2-clustering predic-
tion with Lymphoma may be considered reliable, as
outlined in the corresponding experimental section.

These results show that our proposed methods
based on randomized maps are well-suited to the
characteristics of DNA microarray data: indeed the
low cardinality of the examples, the very large num-
ber of features (genes) involved in microarray chips,
the redundancy of information stored in the spots
of microarrays are all characteristics in favour of
our approach. On the contrary using bootstrapping
techniques to obtain smaller samples from just small
samples of patients should induce more randomness
in the estimate of cluster stability. A resampling
based approach appears to be better suited to eval-
uate the cluster stability of genes, since significantly

larger samples are available in this case [12]. The
alternative based on noise injection into the data to
obtain multiple instance of perturbed data poses dif-
ficult statistical problems for evaluating what kind
and which magnitude of noise should be added to
the data [17].

All the perturbation-based methods need to
properly select a parameter to control the amount of
perturbation of the data: resampled-based methods
need to select the ”optimal” fraction of the data to
be subsampled; noise-injection-based methods needs
to choice the amount of noise to be introduced; ran-
dom subspace and random projections-based meth-
ods needs to select the proper dimension of the pro-
jected data. Anyway, our approach provides a theo-
retically motivated method to automatically find an
”optimal” value for the perturbation parameter, and
in our experiments we observed that values of ε ≤ 0.2
led to reliable results. Moreover our proposed ap-
proach provides also a statistical test that may be
applied also with other stability-based methods to
assess the significance of the discovered solutions.

Despite of the convincing experimental results
obtained with stability-based methods there are
some drawbacks and open problems associated with
these techniques. Indeed, as shown by [8], a given
clustering may converge to a suboptimal solution ow-
ing to the shape of the data manifold and not to the
real structure of the data, thus introducing bias in
the stability indices. Moreover in [37] it has been
shown that stability based methods based on resam-
pling techniques, when cost-based clustering algo-
rithms are used, may fail to detect the correct num-
ber of clusters, if the data are not symmetric. How-
ever it is unclear if these results may be extended to
other stability-based methods (e.g. to our proposed
methods based on random projections) or to other
more general classes of clustering algorithms.

Conclusions
We proposed a stability-based method, based on ran-
dom projections, for assessing the validity of clus-
terings discovered in high-dimensional post-genomic
data. The reliability of the discovered k-clusterings
may be estimated exploiting the distribution of the
clustering pairwise similarities, and a χ2-based sta-
tistical test tailored to unsupervised model order se-
lection. In the theoretical framework of randomized
maps that satisfy the JL lemma, a principled ap-
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proach to select the dimension of the projected data,
and to approximately preserve the structure of the
original data is given, thus yielding to the design of
reliable stability indices for model order selection in
bio-molecular data clusterings.

The χ2-based statistical test may be applied to
any stability method that make use of the distri-
bution of the similarity measures between pairs of
clusterings.

Our experimental results with synthetic data and
real gene expression data show that our proposed
method is able to find significant structures, com-
prising multiple structures simultaneously present
into bio-molecular data.

As an outgoing development, considering that
the χ2-based test assumes that the random vari-
ables representing distributions for different number
of clusters are normally distributed, we are develop-
ing a new distribution-independent approach based
on the Bernstein inequality to assess the significance
of the discovered k-clusterings.
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Figure 1: A two-level hierarchical structure with 2 and 6 clusters is revealed by principal components analysis
(data projected into the two components with highest variance).
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Figure 2: Histograms of the similarity measure distributions for different numbers of clusters.
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Figure 3: Leukemia data set: empirical cumulative distribution functions of the similarity measures for
different number of clusters k.
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Figure 4: Lymphoma data set: empirical cumulative distribution functions of the similarity measures for
different number of clusters k.
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Tables
Table 1 - Sample1: similarity indices
Similarity indices for the synthetic sample1 data set for different k-clusterings, sorted with respect to their
mean values.

k mean variance p-value
2 1.0000 0.0000 1.0000
6 1.0000 0.0000 1.0000
7 0.9217 0.0016 0.0000
8 0.8711 0.0033 0.0000
9 0.8132 0.0042 0.0000
5 0.8090 0.0104 0.0000
3 0.8072 0.0157 0.0000
10 0.7715 0.0056 0.0000
4 0.7642 0.0158 0.0000

.

Table 2 -Leukemia data set
Stability indices for different k-clusterings sorted with respect to their mean values.

k mean variance p-value

2 0.8285 0.0077 1.0000

3 0.8060 0.0124 0.7328

4 0.6589 0.0060 2.3279e-06

5 0.6012 0.0073 9.5199e-11

6 0.5424 0.0057 6.3282e-15

7 0.5160 0.0062 0.0000

8 0.4865 0.0050 0.0000

9 0.4819 0.0060 0.0000

10 0.4744 0.0049 0.0000

Table 3 -Lymphoma data set.
Stability indices for different k-clusterings sorted with respect to their mean values.
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k mean variance p-value

2 0.9566 0.0028 1.0000

3 0.7900 0.0149 0.0000

4 0.6963 0.0128 0.0000

5 0.6387 0.0075 0.0000

6 0.6135 0.0082 0.0000

7 0.6129 0.0079 0.0000

9 0.5864 0.0063 0.0000

8 0.5792 0.0079 0.0000

10 0.5744 0.0058 0.0000

Table 4 - Results comparison
Comparison between different methods for model order selection in gene expression data analysis

Methods

Class. Gap Clest Figure Model
risk statistic of Merit Explorer MOSRAM ”True”

(Lange et (Tibshirani (Dudoit and (Levine and (BenHur et number k
al. 2004) et al. 2001) Fridlyand 2002) Domany 2001) al 2002)

Data set
Leukemia
(Golub et

al. 1999)

k=3 k=10 k=3 k=2,8,19 k=2 k=2,3 k=2,3

Lymphoma
(Alizadeh et

al. 2000)

k=2 k=4 k=2 k=2,9 k=2 k=2 k=2,(3)

15


