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Abstract

Background: The unsupervised discovery of structures (i.e. clusterings) underlying data is a central issue in

several branches of bioinformatics. Methods based on the concept of stability have been recently proposed to

assess the reliability of a clustering procedure and to estimate the ”optimal” number of clusters in bio-molecular

data. A major problem with stability-based methods is the detection of multi-level structures (e.g. hierarchical

functional classes of genes), and the assessment of their statistical significance. In this context, a chi-square

based statistical test of hypothesis has been proposed; however, to assure the correctness of this technique some

assumptions about the distribution of the data are needed.

Results: To assess the statistical significance and to discover multi-level structures in bio-molecular data, a new

method based on Bernstein’s inequality is proposed. This approach makes no assumptions about the distribution

of the data, thus assuring a reliable application to a large range of bioinformatics problems. Results with

synthetic and DNA microarray data show the effectiveness of the proposed method.

Conclusions: The Bernstein test, due to its loose assumptions, is more sensitive than the chi-square test to the

detection of multiple structures simultaneously present in the data. Nevertheless it is less selective, that is

subject to more false positives, but adding independence assumptions, a more selective variant of the Bernstein

inequality-based test is also presented. The proposed methods can be applied to discover multiple structures and

to assess their significance in different types of bio-molecular data.
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Background

Unsupervised cluster analysis of bio-molecular data is one of the main and well-established research lines in

bioinformatics [1]. Classes of co-expressed genes, classes of functionally related proteins, or subgroups of

patients with malignancies differentiated at bio-molecular level can be discovered through clustering

algorithms, and several other tasks related to the analysis of bio-molecular data require the development

and application of unsupervised clustering techniques [2–4]. Anyway, in most bioinformatics problems, we

need to assess the reliability of the discovered clusters, as well as the proper selection of the ”natural”

number of clusters underlying the data [5].

Recently, several methods based on the concept of stability have been proposed to estimate the ”optimal”

number of clusters [6, 7]: multiple clusterings are obtained by introducing perturbations into the original

data, and a clustering is considered reliable if it is approximately maintained across multiple perturbations.

Different procedures may be applied to randomly perturb the data, ranging from bootstrapping

techniques [8], to noise injection into the data [9] or random projections into lower dimensional

subspaces [10,11].

A major problem with stability-based methods is the detection of multi-level structures underlying the

data (e.g. hierarchical subclasses of diseases, or hierarchical functional classes of genes). For instance, it is

possible that data exhibit a hierarchical structure, with subclusters inside other clusters, and we need to

detect these multi-level structures, possibly estimating their reliability and statistical significance. In [7], it

is proposed a χ2-based statistical test of hypothesis to assess the significance of the ”optimal” number of

clusters and to discover multiple structures simultaneously present in bio-molecular data; however, by this

approach, on one hand some assumptions about the distribution of the similarity measures are needed to

estimate the reliability of the obtained clusterings, and on the other hand test results depend on the choice

of user-defined parameters.

In this contribution we propose a distribution-free approach that does not assume any ”a priori”

distribution of the similarity measures, and that does not require any user-defined additional parameter.

The proposed approach is based on the classical Bernstein inequality [12], and for its loose assumptions

about the distribution of the data may in principle be applied to any unsupervised model order selection

problem. More precisely the proposed stability-based method may be applied to several tasks related to

the unsupervised analysis of complex bio-molecular data: (a) the assessment of the reliability of a given

clustering solution; (b) the clustering model order selection, that is the discovery of the ”natural” number

of clusters in the data; (c) the assessment of the statistical significance of a given clustering solution; (d)
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the discovery of multiple structures underlying the data, i.e. the detection of multiple reliable clustering

solutions at a given significance level.

Methods

In the following sections we summarize the characteristics of the stability-based procedures for the

assessment of the reliability of clusterings, and we introduce our proposed method based on the Bernstein

inequality.

Model order selection through stability based procedures

Let be C a clustering algorithm, ρ(D) a given random perturbation procedure applied to a data set D and

sim a suitable similarity measure between two clusterings (e.g. the Jaccard similarity [13]). Among the

random perturbations we recall random projections from a high dimensional to a low dimensional

subspace [14], or bootstrap procedures to sample a random subset of data from the original data set D [8].

Fixing an integer k (the number of clusters), we define Sk (0 ≤ Sk ≤ 1) as the random variable given by

the similarity between two k-clusterings obtained by applying a clustering algorithm C to data pairs D1

and D2 obtained by randomly and independently perturbing the original data D.

If Sk is concentrated close to 1, then the corresponding clustering is stable with respect to a given

controlled perturbation and hence it is reliable. This idea, mutuated by a qualitative method proposed

in [15], can be formalized using the integral g(k) of the cumulative distribution Fk of Sk [7]:

g(k) =
∫ 1

0

Fk(s)ds (1)

If g(k) is close to 0 then the values of the random variable Sk are close to 1 and hence the k-clustering is

stable, while for larger values of g(k) the k-clustering is less reliable. This observation comes from the

following fact:

Fact : E[Sk] = 1− g(k), V ar[Sk] ≤ g(k)(1− g(k)).

Proof :

Let be fk(s) the probability density function of Sk; then

E[Sk] =
∫ 1

0

sfk(s)ds =
∫ 1

0

sF ′k(s)ds = 1−
∫ 1

0

Fk(s)ds = 1− g(k)

Moreover:

V ar[Sk] = E[S2
k]− E[Sk]2 ≤ E[Sk]− E[Sk]2 = g(k)(1− g(k))
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Hence, g(k) ' 0 implies V ar[Sk] ' 0. As a consequence, g(k) or equivalently E[Sk] can be used as a good

index of the reliability of the k-clusterings (clusterings with k clusters). E[Sk] may be estimated by the

empirical mean ξk of n replicated similarity measures between pairs of perturbed clusterings:

ξk =
n∑

j=1

Skj

n
(2)

where Skj represents the similarity between two k-clusterings obtained through the application of the

algorithm C to a pair of perturbed data.

We may perform a sorting of the ξk:

(ξ2, ξ3, . . . , ξH+1)
sort→ (ξp(1), ξp(2), . . . , ξp(H)) (3)

where p is an index permutation such that ξp(1) ≥ ξp(2) ≥ . . . ≥ ξp(H). In this way we obtain an ordering of

the clusterings, from the most to the least reliable one.

Exploiting this ordering, we proposed a χ2-based statistical test to detect and to estimate the statistical

significance of multiple-structures discovered by clustering algorithms [7]. The main drawbacks of this

approach consists in an implicit normality assumption for the distribution of the Sk (random variables that

measure the similarity between two perturbed k-clusterings, see above), and in a user defined threshold

parameter that determines when two k-clusterings can be considered similar and ”stable”. Indeed, in

general we have no guarantee that the Sk random variables are normally distributed; moreover the

”optimal” choice of the threshold parameter seems to be application dependent and may affect the overall

test results.

In this contribution, to address these problems we propose a new statistical method that, adopting a

stability-based approach, makes no assumptions about the distribution of the random variables and does

not require any user-defined threshold parameter.

Hypothesis testing based on Bernstein inequality

We briefly recall the Bernstein inequality, because this inequality is used to build-up our proposed

hypothesis testing procedure.

Bernstein inequality. If Y1, Y2, . . . , Yn are independent random variables s.t. 0 ≤ Yi ≤ 1, with

µ = E[Yi], σ2 = V ar[Yi], Ȳ =
∑

Yi/n then

Prob{Ȳ − µ ≥ ∆} ≤ e
−n∆2

2σ2+2/3∆ (4)
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Using the Bernstein inequality, we would estimate if for a given r, 2 ≤ r ≤ H, there exists a statistically

significant difference between the reliability of the best p(1) clustering and the p(r) clustering (eq. 3). In

other words we may state the null hypothesis H0 and the alternative hypothesis in the following way:

H0: p(1) clustering is not more reliable than p(r) clustering, that is E[Sp(1)] ≤ E[Sp(r)]

Ha: p(1) clustering is more reliable than p(r) clustering, that is E[Sp(1)] > E[Sp(r)]

To this end, consider the following random variables:

Pi = Sp(1) − Sp(i) and Xi = ξp(1) − ξp(i) (5)

We start considering the first and last ranked clustering p(1) and p(H). In this case the above null

hypothesis H0 becomes: E[Sp(1)] ≤ E[Sp(H)], or equivalently E[Sp(1)]− E[Sp(H)] = E[PH ] ≤ 0. The

distribution of the random variable XH (eq. 5) is in general unknown; anyway note that in the Bernstein

inequality no assumption is made about the distribution of the random variables Yi (eq. 4). Hence, fixing a

parameter ∆ ≥ 0, considering true the null hypothesis E[PH ] ≤ 0, and using Bernstein inequality, we have:

Prob{XH ≥ ∆} ≤ Prob{XH − E[PH ] ≥ ∆} ≤ e
−n∆2

2σ2+2/3∆ (6)

Considering an instance (a measured value) X̂H of the random variable XH , if we let ∆ = X̂H we obtain

the following probability of type I error:

Perr{XH ≥ X̂H} ≤ e
−nX̂2

H
2σ2

H
+2/3X̂H

with σ2
H = σ2

p(1) + σ2
p(H).

If Perr{XH ≥ X̂H} < α, we reject the null hypothesis: a significant difference between the two clusterings

is detected at α significance level and we continue by testing the p(H − 1) clustering. More in general if the

null hypothesis has been rejected for the p(H − r + 1) clustering, 1 ≤ r ≤ H − 2 then we consider the

p(H − r) clustering, and using the Boole inequality, we can estimate the type I error:

Perr(H − r) = Prob{
∨

H−r≤i≤H

Xi ≥ X̂i} ≤
H∑

i=H−r

Prob{Xi ≥ X̂i} ≤
H∑

i=H−r

e
−nX̂2

i
2σ2

i
+2/3X̂i (7)

As in the previous case, if Perr(H − r) < α we reject the null hypothesis: a significant difference is detected

between the reliability of the p(1) and p(H − r) clustering and we iteratively continue the procedure

estimating Perr(H − r − 1).

This procedure stops if either of these cases succeeds:
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I) The null hypothesis is rejected till r = H − 2, that is ∀r, 1 ≤ r ≤ H − 2, Perr(H − r) < α: all the

possible null hypotheses have been rejected and the only reliable clustering at α-significance level is the top

ranked one, that is the p(1) clustering.

II) The null hypothesis cannot be rejected for r ≤ H − 2, that is, ∃r, 1 ≤ r ≤ H − 2, Perr(H − r) ≥ α: in

this case the clusterings that are significantly less reliable than the top ranked p(1) clustering are the

p(r + 1), p(r + 2), . . . , p(H) clusterings.

Note that in this second case we cannot state that there is no significant difference between the first r

top-ranked clusterings, since the upper bound provided by the Bernstein inequality is not guaranteed to be

tight. To answer to this question, we may apply the χ2-based hypothesis testing proposed in [7] to the

remaining top ranked clusterings to establish which of them are significant at α level, but in this case we

need to assume that the similarity measures between pairs of clusterings are distributed according to a

normal distribution.

If we assume that the Xi random variables (eq. 5) are (at least approximately) independent, we can obtain

a variant of the previous Bernstein inequality-based approach, that we name Bernstein ind. for brevity. By

this approach we should in principle obtain lower p-values, thus assuring lower false positive rates than the

Bernstein test without independence assumptions.

With these independence assumptions the null hypothesis H0 and the alternative hypothesis for the

Bernstein ind. test can be formulated as follows:

H0: ∃i, 2 ≤ i ≤ r ≤ H such that E[Sp(1)] ≤ E[Sp(r)]: it does exist at least one p(i)-clustering equally or

more reliable than the first one in the group of the first r ordered clusterings.

Ha: ∀i, 2 ≤ i ≤ r ≤ H E[Sp(1)] > E[Sp(r)]: all the clusterings in the group of the first r ordered clusterings

are less reliable than the first one.

If we assume that the null hypothesis is true, using the independence among the Xi random variables, we

may obtain the type I error:

Perr(r) = Prob{
∧

2≤i≤r

Xi ≥ X̂i} =
r∏

i=2

Prob{Xi ≥ X̂i} ≤
r∏

i=2

e
−nX̂2

i
2σ2

i
+2/3X̂i (8)

Starting from r = H, if Perr(r) < α we reject the null hypothesis: a significant difference is detected

between the reliability of the p(1) and the other first r-clustering and we iteratively continue the procedure

estimating Perr(r − 1). As in the Bernstein test, the procedure is iterated until we remain with a single

clustering (and this will be the only significant one), or until Perr(r) ≥ α and in this case we cannot reject
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the null hypothesis and the first r clusterings can be considered equally reliable. Note that, strictly

speaking, in this case we can only say that at least one of the first r clusterings is equally or more reliable

than the first one.

Results and Discussion

In this section we apply the Bernstein test to synthetic and DNA microarray data analysis, and compare it

to the previously proposed χ2-based test [7]. For the experiments we used the mosclust R package [16], and

all the data used in the experiments are available from the authors.

Analysis of hierarchical structures in synthetic data

In order to show the effectiveness of the proposed approach we consider synthetic data with a priori known

multi-level hierarchical structure. To this end we generated a two-dimensional synthetic data set with a

three-level hierarchical structure (Fig. 1) using the clusterv R package [17]: at a first level three large

clusters are present in the data (black ovals); at a second level we have a 6-clustering (red ovals) and finally

a third-level 12-clustering may be detected (blue ovals).

We performed analysis of the stability of the clusters (see Section Model order selection through stability

based procedures), by applying random subsample techniques to perturb the data (100 subsample pairs

each composed by 80 % of the data randomly drawn without replacement) and Ward’s hierarchical

clustering algorithm [18] with dendrogram cuts from k = 2 to k = 15 clusters. Then we computed the

similarity indices for each k from 2 to 15: their empirical cumulative distribution is shown in Fig. 2. From

Fig. 2 we may observe that 3 and 6-clusterings similarities are closely concentrated near 1, thus showing

that these clusterings are clearly detectable by the hierarchical clustering algorithm. Indeed both χ2-based

and Bernstein-based test of hypothesis select these clusterings at 10−5 significance level. Nevertheless, the

Bernstein test selects also the 7-clustering (false positive) and the 12-clustering (true positive) (Table 1).

As a second experiment we considered a 1000-dimensional synthetic multivariate gaussian distributed data

set. These data are characterized by a two-level hierarchical structure: at a first level we have two main

clusters with inside each one three other clusters, thus resulting in a second level 6-clustering. Each of the

six second-level clusters is distributed according to a hyperspherical gaussian distribution and each cluster

contains only 20 examples, thus resulting in a sparse data set (low number of examples in a high

dimensional space). We applied the Prediction Around Medoids clustering algorithm [19], and we

perturbed the data through Bernoulli random projections [7], from a 1000 to a 479-dimensional subspace,
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considering the reliability of clusterings composed from 2 to 10 clusters. In this case both the χ2-based and

the Bernstein based iterative procedures correctly detect 2 and 6-clusterings at 10 −4 significance level.

With these high dimensional data the Bernstein test is not subject to false positives, but also the chi2 test

correctly detects all the structures underlying the data.

Discovery of multi-level structures in DNA microarray data

As an example of the application of the Bernstein test to the discovery of multiple structures in

bio-molecular data, we consider two classical DNA microarray data sets: Leukemia [20] and Lymphoma [21].

The Leukemia data set is composed by a group of 25 acute myeloid leukemia (AML) samples and another

group of 47 acute lymphoblastic leukemia (ALL) samples, that can be subdivided into 38 B-Cell and 9

T-Cell subgroups, resulting in a two-level hierarchical structure.

We applied both resampling and random projections to lower dimensional subspaces to perturb the original

data using the R package mosclust [16] that implements the Bernstein-based test and the stability

measures described in Sect. Model order selection through stability based procedures.

Fig. 3 shows the empirical cumulative distributions of the similarity values and Table 2 the p-values of the

clusterings sorted according to their ξ values (eq. 2), using Bernoulli random projections [7]. Our proposed

procedure detects the 2− clustering as the most reliable at 0.01 significance level, according to the fact

that two biologically meaningful groups (ALL, acute lymphoblastic leukemia and AML, acute myeloid

leukemia) are present in the data. Choosing a significance level α = 10−5 we cannot reject the null

hypothesis that a 2-clustering is less or equally reliable than a 3-clustering: in this case 2 structures (2 and

3-clusterings) are detected as simultaneously present in the data, reflecting the biological fact that ALL

can be subdivided into two subclasses (B-cell and T-cell ALL).

The results obtained with two variants of the χ2 [7] and Bernstein based statistical tests are compared in

Fig. 4 (k-means algorithm) and Fig. 5 (PAM, Prediction Around Medoids algorithm [19]) : log p-values are

represented in ordinate, while in abscissa the number of clusters are sorted according to the empirical mean

of the corresponding pairwise similarities (eq. 2). In both figures a straight horizontal dashed line

represents a significance level α = 0.001: k-clusterings above the dashed line are significant, that is their

reliability significantly differ from the k-clusterings below the dashed horizontal line. Note that the

k-means (Fig. 4) and PAM (Fig. 5) clustering algorithms provide a slightly different ranking of the

similarity indices, but in most cases 2 and 3 clusterings are considered significantly more reliable than the

others, according to the biological characteristics of the data. The Bernstein test, due to its more general
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assumptions (no particular distributions and no independence are assumed for the random variables that

represent the similarity between clusterings) is less selective (in the sense that it may consider reliable a

larger number of k-clusterings) than the χ2-based test that make assumptions about the distribution of the

random variables. This is confirmed by the fact that Bernstein p-values decrease more slowly with respect

to the χ2 test (Fig. 4 and 5), thus resulting in a better sensitivity to multiple structures present in the

data. The main drawback of this behaviour is the larger probability of false positives. Note that the

Bernstein ind. test shows an intermediate trend between the Bernstein and χ2 test (red lines in Fig. 4

and 5): the assumption of independence between the random variables yields a more selective Bernstein

inequality-based test less subject to false positives, but potentially less sensitive to multiple structures

underlying the data.

The Lymphoma gene expression data set [21] comprises three different lymphoid malignancies: Diffuse

Large B-Cell Lymphoma (DLBCL), Follicular Lymphoma (FL) and Chronic Lymphocytic Leukemia

(CLL). The data provides expression levels for 4026 genes [22], with 62 samples subdivided in 42 DLBCL,

11 CLL and 9 FL. We performed pre-processing of the data according to [21], replacing missing values with

0 and then normalizing the data to zero mean and unit variance across genes. We considered both

resampling techniques and random projections to perturb the data. In particular, data have been

resampled by randomly drawing 80% of the available data without replacement, and data have been

projected using Bernoulli projections with ε = 0.2 corresponding to 413-dimensional subspaces.

Fig. 6 and 7 show the empirical cumulative distribution of the similarity measures for different numbers of

clusters, using the hierarchical Ward’s clustering algorithm and respectively Bernoulli random projections

(Fig. 6) and subsampling perturbation techniques (Fig. 7). Considering random projections both the

Bernstein and χ2-based tests correctly select 2 and 3-clusterings at 0.001 significance level. On the

contrary, using subsampling techniques only the Bernstein inequality based test select as significant both 2

and 3-clusterings, while the χ2 tests select only the 2-clustering (Table 3). These results confirm that the

Bernstein test is more sensitive to multiple structures underlying the data.

Considering the Leukemia and Lymphoma data sets, the proposed Bernstein test achieves results

competitive with state-of-the-art stability methods proposed in the literature. Indeed the Model Explorer

algorithm, based on subsampling techniques, correctly detect only the 2-clustering structure both in

Leukemia and Lymphoma [15]. Another subsampling-based method (Figure of Merit [23]) detects 2, 8 and

19-clusterings in Leukemia and 2 and 9-clusterings in Lymphoma. Stability methods that apply supervised

algorithms to assess the quality of the discovered clusterings correctly detect only a 3-clustering in
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Leukemia and a 2-clustering in Lymphoma [6, 24]. Our previously proposed χ2-based test correctly detects

both 2 and 3-clusterings in both data sets, if random projections are used as perturbation method, but it

fails to detect the 3-clustering in Lymphoma when subsampling techniques are applied. On the contrary,

the Bernstein test discovers both the two-level structures in Leukemia and Lymphoma, independently of

the applied perturbation method.

The experimental results with both synthetic and gene expression data support the hypothesis that the

Bernstein test is more sensitive to multiple structures underlying the data. Indeed in the first experiment

with synthetic data it correctly predicts also the third level of structure, that is the 12-clustering; on the

other hand it is subject to false positives, as shown by the wrong discovery of a 7-clustering (Table 1).

These results are confirmed by the fact that Bernstein p-values decrease more slowly with respect to the χ2

test (Fig. 4 and 5): in this way for a given significance level it is likely that the Bernstein test selects larger

sets of structures underlying the data. The risk of an increased rate of false positives may be balanced by

the assumption of independence between the random variables, yielding to the proposed Bernstein ind.

test (eq. 8), less subject to false positives, but potentially less sensitive to multiple structures underlying

the data.

In real applications to complex bio-molecular data, we suggest to apply both Bernstein-based and χ2-based

procedures: structures discovered by both tests are likely to be significant, and Bernstein-based tests can

discover potential structures not detectable with the more selective χ2-based test. Moreover the

computational burden due to the application of the χ2 and Bernstein-based iterative procedures is

irrelevant with respect to the execution of clustering algorithms.

Conclusions

We proposed a test of hypothesis based on Bernstein inequality to estimate if there is a significant

difference between the reliability of different clusterings performed on the same data. Our proposed

method can be applied to discover multiple or hierarchical structures, using different clustering algorithms

and different perturbation methods. Even if in our experiments we applied the Bernstein test to the

analysis of gene expression data, this approach may be in principle applied to discover multiple structures

in any type of complex bio-molecular data. Indeed no user-defined parameters are required, and very loose

assumptions are made about the distribution of the data and the distribution of the similarity values used

to estimate the stability of the discovered clusterings, thus assuring a reliable application of the method to

a large range of bioinformatics problems.
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Our experiments with synthetic and gene expression data show that Bernstein-based tests are more

sensitive than χ2-based tests to multiple structures embedded in the data: in this way not self-evident

structures may be detected too, as well as subtle relationships between the data. A drawback of the

Bernstein test is its larger expected rate of false positives, but assuming independence between the

empirical means of the similarity values a new test (Bernstein ind.), less subject to false positives, has been

proposed.

Developments of this work could consist in the adaptation and application of the proposed methods to

large scale bioinformatics problems, to discover multiple structures underlying the data when a very large

number of clusters is potentially involved.
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Figure 1: Synthetic data set: a three-level hierarchical structure with 3, 6 and 12 clusters.
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Figure 2: Synthetic data set: empirical cumulative distribution functions of the similarity measures for
different number of clusters (Hierarchical clustering).

13



0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

similarities

2 clusters

3 clusters

Figure 3: Leukemia data set. Empirical cumulative distributions of the similarity measures for different
numbers of clusters k .
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Figure 4: K-means clustering: log p-value computed for χ2-based and Bernstein-based statistical tests.
Ordinate: log p-value; abscissa: number of clusters sorted according the computed similarity means.
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Figure 5: PAM clustering: log p-value computed for χ2-based and Bernstein-based statistical tests. Ordinate:
log p-value; abscissa: number of clusters sorted according the computed similarity means.
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Figure 6: Lymphoma data set. Empirical cumulative distribution functions of the similarity measures for
different number of clusters k. Perturbation technique: random projections
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Figure 7: Lymphoma data set. Empirical cumulative distribution functions of the similarity measures for
different number of clusters k. Perturbation technique: resampling
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Tables
Table 1 - Synthetic data: comparison of the χ2 and Bernstein inequality-based tests.

Bernstein ind. stands for the Bernstein test with assumption of independence between the random

variables representing the empirical mean of the similarity measures.

Test Structures discovered
(10−5 significance level)

χ2 3-clustering
6-clustering

Bernstein ind. 3-clustering
6-clustering
7-clustering

Bernstein 3-clustering
6-clustering
7-clustering
12-clustering

.

Table 2 - Leukemia data set: empirical means (ξ) and p-values computed according to the Bernstein
inequality.

Num.clusters p-values ξ
2 ———- 0.8664
3 1.0561e-04 0.7521
4 1.2165e-08 0.6850
5 1.0554e-12 0.6196
6 3.9321e-14 0.5922
7 1.7630e-14 0.5878
8 2.3732e-15 0.5822
9 2.7570e-16 0.5690
10 1.6297e-17 0.5491

.

Table 3 - Lymphoma data: comparison of the χ2 and Bernstein inequality-based tests.

t represents the threshold level for the χ2-based test.

Test Structures discovered
(0.001 significance level)

χ2 (t=0.9) 2-clustering
χ2 (t=0.7) 2-clustering

Bernstein ind. 2-clustering
3-clustering

Bernstein 2-clustering
3-clustering

.
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