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Abstract: In the framework of unsupervised pattern analysis of gene expression, the high dimensionality of the data as 
well as the accuracy of clustering algorithms and the reliability of the discovered clusters are critical problems. We 
propose and analyze an algorithmic scheme for unsupervised cluster ensembles, where the dimensionality reduction is 
obtained by means of randomized embeddings with low distortion. Multiple "base" clusterings are performed on 
random subspaces, approximately preserving the distances between the projected examples. In this way the accuracy of 
each "base" clustering is maintained, and the diversity between them is improved. By combining the multiple 
clusterings, we can enhance the overall accuracy and the reliability of the discovered clusters, as shown by our 
experimental results with high-dimensional gene expression  
Key words: Clustering, DNA microarray, ensemble clustering, random projections.  

 

INTRODUCTION 
Exploratory unsupervised analysis of gene 

expression data may discover functional classes of 
tissue specimens at bio-molecular level. Relevant 
applications include discovery of new subclasses of 
diseases that may be critical for a more refined bio-
molecular diagnosis and for appropriate treatments 
tailored to the bio-molecular portrait of a 
patient [Rosenwald et al. 02]. Clustering algorithms 
play also a significant role with supervised 
classification of DNA microarray data (e.g. for the 
bio-molecular diagnosis of tumors, [Furey et al. 00]), 
since the labels of the classes are often determined 
through unsupervised clustering methods. As a 
consequence, inaccurate cluster assignments could 
lead to erroneous diagnoses and inappropriate 
treatment protocols with a a consequent impact on 
healthiness and survival of patients [Dudoit and 
Frudlyand 02].  

The main goal of this work is to improve the 
accuracy of clustering algorithms in the framework of 
gene expression data analysis, through unsupervised 
ensemble methods.  

Ensemble clustering methods have been recently 
applied to gene expression data analysis, to improve 
accuracy, robustness and stability of the discovered 
clusters [Monti et al. 03].  [Hu and Yoo 04] combined 
different clustering algorithms to obtain a more stable 

consensus partition of the data, while [Dudoit and 
Fridlyand 02] applied resampling techniques borrowed 
from classical supervised bagging techniques to 
improve the accuracy of clustering algorithms.  

Our approach to ensemble clustering exploits one 
of the characteristics of DNA microarray data that 
make difficult to process them, that is their high 
dimensionality. Indeed it is well-known that one of the 
main problem of gene expression data processing is 
represented by their high dimensionality and relatively 
low cardinality: in this context the "curse of 
dimensionality" problem arises [Bellman 61]. The 
main supervised approach to this problem consists in 
reducing the dimensionality through gene selection 
methods (see [Guyon and Ellisseeff 03] for a recent 
review). When we need to discover unknown common 
patterns of expression or new subclasses of diseases 
(e.g. identifying molecular variations among tumors 
for a finer and more reliable classification), this 
approach is not applicable, because we do not known 
the label of the examples in advance. In this 
unsupervised context Principal Component Analysis 
may be in principle applied to reduce dimensionality, 
but useful discriminant information may be lost. 
Recently [Smolkin and Gosh 03] proposed an 
approach based on an unsupervised version of the 
random subspace method [Ho 98] to assess the 
reliability of the discovered gene expression clusters. 
By extending this approach to more general random 
projections, in the framework of random embeddings 
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between euclidean spaces, we propose an ensemble 
method based on multiple clusterings of the data, 
performed in subspaces of reduced dimension and 
with low metric distortion.  

The next section introduces some basic concepts 
about randomized embeddings, in particular focusing 
on low distorted randomized embeddings and random 
projections. Then the proposed Randomized 
embedding clustering (RE-Clust) ensemble algorithm 
scheme is presented. Sect. 3 show the results of the 
application of the ensemble method to high 
dimensional DNA microarray data. The discussion 
and the conclusions end the paper.  

 

1. Randomized Embeddings 

1.1. Clustering and Data Compression 
Consider a data set X = {x1,x2,…,xn}, where 

d
i Rx ∈ are real numbers (1 ≤ i ≤ n); a subset A 

contained in {1,2,…,n} univocally individuates a 
subset of elements contained in X. The data set X may 
be represented as a d x n matrix D, where columns 
correspond to the examples (e.g. patients), and rows 
correspond to the "components" of the examples x 
included in X (e.g. the gene expression levels for 
different d genes).  

A k-clustering C of X is a list C = <A1,A2,…Ak> 
where Ai are subsets of {1,2,…,n} and such that  
U Ai ={1,2,…,n} .  

A clustering algorithm C is a (possibly 
randomized) procedure that, having as input a data set 
X and an integer k, outputs a k-clustering C of X: 
C(X,k)= <A1,A2,…Ak>. We may also equivalently 
apply a clustering algorithm to the matrix D that 
represents X, having that C(D,k)=C(X,k). Here we 
suppose that the result depends only on the distances  
|| xi – xj || between elements in X.  

The computation time of a clustering algorithm C 
depends critically on the dimension d of the elements 
in X. In order to compress the data set, we need to find 
a linear map m from a d to a d’-dimensional subspace 
with d’<d, such that ||m(xi) – m(xj)|| ≈ || xi – xj ||. In this 
way, algorithms whose results depend only on the 
distances  || xi – xj || could be applied to the 
compressed data m(X), giving the same results.  

Unfortunately, in general, such embeddings do not 
exist, but we can obtain the desired result even if a 
certain distortion is introduced; to this end, 
randomized embeddings with low distortion represent 
a key concept.  

1.2. Randomized embeddings with low distortion 
For all x,y belonging to X the distortion distm (x,y) 

is defined:  

||||
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A randomized embedding between Rd and Rd’ with 
distortion 1 + ε, (0 < ε ≤ 1/2 ) and failure probability P 
is a distribution probability on the linear mapping m: 
Rd  Rd’, such that, for every pair p,q belonging to Rd, 
the following property holds with probability ≥ 1 - P:  
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The main result on randomized embedding is due 
to [Johnson and Lindenstrauss 84], who proved the 
existence of a m: Rd  Rd’ randomized embedding 
with distortion  1 + ε and failure probability )( 2εde −Ω  , 
for every 0 < ε ≤ 1/2. As a consequence, for a data set 
S,  with |S| = n , by union bound, for all p,q belonging 
to S , it holds:  
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Hence, by choosing d’ such that 2/1)(2 2

<−Ω εden , 
it is proved the following Johnson-Lindenstrauss (JL) 
lemma:  
Given a set S with |S| = n there exists a 1 + ε distortion 
embedding into Rd’ with d’ = c log n/ ε2 , where c is a 
suitable constant.  

The embedding exhibited in [11] consists in 
random projections from Rd into Rd’, represented by  
d’ x d matrices with random orthonormal vectors. 
Similar results may be obtained by using simpler 
embeddings [3], represented through random d’ x d 
matrices )(/1 '

ijrdP = , where rij are random 
variables such that: E[rij] = 0 and Var[rij]=1. 

1.3. Random projections 
Suppose that d’ = c log n/ ε2 << d; the JL lemma 

guarantees the existence of a d’ x d matrix P such that 
the columns of the "compressed" data set DP = PD 
have approximately the same distance (up to a 
distortion 1+ ε) of the corresponding columns in D. 
Moreover there is a randomized algorithm that, having 
in input D, outputs DP in time O(dd’n) with high 
confidence.  

Examples of randomized maps are:  

1. Plus-Minus-One (PMO) random projections: 
represented by d’ x d matrices  P=1/√d’(rij),   
where rij are uniformly chosen in {-1,1}, such 
that Prob(rij = 1) = Prob(rij = -1) = 1/2 . In this 
case the JL lemma holds with c ≈ 4.  

2. Achlioptas random projections [1]: 
represented by d’ x d matrices P=1/√d’(rij),  
where rij are chosen in  {-√3,0, √3}, such that 
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Prob(rij=0)=2/3 and Prob(rij = √3) =   
Prob(rij = - √3)=1/6. In this case also we have 
E[rij] = 0 and Var[rij]=1 and the JL lemma 
holds.  

3. Random Subspace (RS) [Ho 98]: represented 
by d’ x d matrices P=√d/√d’(rij), where rij are 
uniformly chosen with entries in {0,1}, and 
with exactly one 1 per row and at most one 1 
per column. It is worth noting that, in this 
case, the "compressed" data set DP can be 
quickly computed in time O(nd’), 
independently from d. Unfortunately, RS does 
not satisfy the JL lemma.  

 

2. The RE-Clust ensemble algorithm  
In this section we introduce the cluster ensemble 

algorithm RE-Clust (acronym for Randomized 
Embedding Clustering). It is based on three main 
items: 

1. Data compression. Clustering algorithms work on 
the basis of the dissimilarities or distances 
between examples, and randomized maps allow to 
embed data into lower dimensional spaces, 
approximately preserving their distances.  

2. Multiple "base" clusterings on multiple instances. 
For a fixed randomized map, we can obtain 
multiple instances of data sets by applying 
multiple random projections to the same input 
data set. Multiple "base" clusterings are then 
produced, by calling a clustering algorithm on the 
obtained multiple instances.  

3. Combining multiple clusterings. The final 
clustering is produced by combining the multiple 
"base" clusterings, In principle, we may combine 
clusterings using a "majority voting" approach, or 
adapting other combination schemes previously 
proposed for supervised ensembles of learning 
machines. Anyway, with clustering we have no 
univocally determined labels, and we need to 
refer to a "main" clustering (e.g. a clustering in 
the original high dimensional input space), to 
obtain a set of "reference" labels. Even this 
approach is in principle feasible, noise may be 
likely introduced, if the main clustering is too 
inaccurate. Here we adopt a combination scheme 
similar to that proposed by [Dudoit and Fridlyand 
02], using the ensemble of clusterings to build a 
similarity matrix, and applying a second-level 
clustering algorithm to the lines of the matrix.  

The similarity matrix M associated to a clustering 
C = < A1,A2, …, Ak> is a n x n matrix such that:  
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where I is is the characteristic function of the set 
As, that is it is equal to 1 if i belongs to As, 0 
otherwise. The algorithm RE-Clust calls two 
clustering algorithms C and Ccom to respectively 
generate the multiple clusterings and to combine the 
clustering results through the similarity matrix M. The 
high level pseudo-code of the ensemble algorithm 
scheme is the following: 

RE-Clust algorithm:  
Input:  

• a data set X = {x1,x2,…,xn}, represented by a  
d x n matrix D.  

• an integer k (number of clusters)  
• a real ε > 0 (distortion level)  
• an integer c (number of clusterings)  
• two clustering algorithms C and Ccom 
• a procedure that realizes a randomized map m 

begin algorithm  
 
(1) Set the d’ dimension of the projected subspace  
according to the JL lemma:  
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(2) Initialize the similarity matrix:  
For each  i,j belonging to {1,2,…,n} do  
         Mij = 0 
(3) Repeat for t = 1 to c 

 
(4) Generate a realization Pt of the                 
randomized map m 
(5) Generate the projected data Dt :  
          Dt = Pt · D 
(6) Apply the clustering algorithm C to Dt:  
       < A1,A2, …, Ak> = C(Dt,k) 
(7) Generate the similarity matrices M(t):  
For each i,j belonging to {1,2,…,n} 
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end repeat  
(8) Compute M, the main similarity matrix:  

c

M
M

c

t

t∑
== 1

)(

 

(9) Apply the clustering algorithm Ccom to M to 
obtain the final clustering:  
< B1,B2, …, Bk> = C(M,k) 
 
end algorithm.  



SETIT2007  
 

 - 4 - 

Output:  

• the final clustering  C = < B1,B2, …, Bk> 
• the similarity matrix M.  

In the first step of the algorithm the dimension d’ 
for the compressed data is computed. Since the failure 
probability is )( 2εde −Ω  (see Sect. 1.2), considering the c 
realizations P1, …, Pc of the randomized embedding m 
(step 4) inside the repeat loop, we have, by union 
bound, that the following property holds:  
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Therefore, in the case of m = PMO , for  
d’= 2(2log|X|+log c)/ε2, with high probability we have 
that all the projections preserve the distances between 
the elements in X, up to a distortion 1 + ε.  

Inside the main repeat loop (step 3-7) a projected 
data set Dt = Pt D is computed, and the corresponding 
clustering < A1,A2, …, Ak> is obtained by calling C, 
and a M(t) similarity matrix is built. After step (8), Mij 
denotes the frequency by which the examples i and j 
occur in a randomly drawn cluster across multiple 
clusterings. If the k-clustering determines a partition, 
it is easy to see that 0 ≤ Mij ≤ 1/k . The final clustering 
is performed by applying the clustering algorithm 
Ccom to the similarity matrix M.  

We may choose different random projections to 
generate different RE-Clust ensembles. For instance, 
in our experiments (Sect. 3) we applied both PMO and 
RS random projections, to obtain the corresponding 
PMO and RS cluster ensembles.  

3. Experiments with DNA microarray data  
In this section we apply the proposed RE-Clust 

ensemble algorithm to gene expression data. The 
Ward's hierarchical agglomerative clustering 
algorithm [Ward 63] has been applied for both the 
base C and combining clustering algorithm Ccom, 
using as dissimilarity function the euclidean distance. 

3.1.  Experimental environment 
We considered two DNA microarray data sets 

available on the web. The first one (DLBCL-FL data 
set) is composed by tumor specimens from 58 Diffuse 
Large B-Cell Lymphoma (DLBCL) and 19 Follicular 
Lymphoma (FL) patients [Shipp et al. 02]. The second 
one (Primary-Metastasis data set) contains expression 
values in Affymetrix's scaled average difference units 
for 64 primary adenocarcinomas and 12 metastatic 
adenocarcinomas (lung, breast, prostate, colon, ovary, 
and uterus) from unmatched patients prior to any 
treatment [Ramaswamy et al. 03]. In both cases we 

followed the same preprocessing and normalization 
steps described in [Shipp et al. 02] and [Ramaswamy 
et al. 03].  

We compared classical single hierarchical 
clustering algorithm with our ensemble approach 
considering PMO and RS random projections (Sect. 
1.3).  

For each ensemble we randomly repeated the 
randomized projections 30 times, and each time we 
built PMO and RS ensembles composed by 50 base 
clusterings, for different ε values between 0.1 and 0.4.  

Since clustering does not univocally associate a 
label to the examples, but only provides a set of 
clusters, we evaluated the error by choosing for each 
clustering the permutation of the classes that best 
matches the "a priori" known "true" classes.  

3.2. Results 
Fig. 1 show the distributions of the errors of RE-

Clust ensembles with DNA microarray data across 30 
replications of the experiments.  

In both cases RE-Clust ensembles perform equal or 
better than single hierarchical clustering, at least when 
relatively low distorted embeddings are chosen.  

With the DLBCL-FL data set there is no significant 
difference in the accuracy achieved by RE-Clust 
ensembles and single hierarchical clustering (Fig. 1 a). 
In both cases we obtain an error of about 10%. 
However note that, using Golub's weighted 
voting [Golub et al. 99] and leave-one-out estimation 
of the error, [Shipp et al. 02] achieved an error of 
about 9%. Hence using an unsupervised method that 
does not use "a priori" knowledge on the data we 
obtain an error comparable with the one obtained by a 
supervised approach that on the contrary exploits the 
knowledge about the labels. This fact suggests that 
with DLBCL-FL probably is very difficult to lower the 
10% error using an unsupervised method, and hence in 
this case ensembling cannot improve the overall 
performance. Anyway, also when it is hard to improve 
the performance, we may apply ensembles to confirm 
the reliability of the discovered clusters. Indeed, we 
obtained the same error with all the 30 random 
repetitions of PMO ensembles each one composed by 
50 base clusterings over 3499-dimensional random 
projections obtained from the original 6285-
dimensional space (ε=0.1, Fig. 1 a).  

Fig. 1 (b) shows that with Primary-Metastasis 
DNA microarray data [Ramaswamy et al. 03] Re-
Clust ensembles can improve single hierarchical 
clustering. Also with this data set we try to separate 
two classes (primary from metastatic tumors), but in 
this case the task is more difficult, because the 
primary tumors are heterogeneous, collecting lung, 
breast, prostate, colon, ovary, and uterus samples, as 
well as their metastatic counterparts.  

In particular with PMO ensembles for different 
low distorted subspaces we obtain better results than 
that achieved with single hierarchical clustering (Fig. 
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1 b).  

We obtained similar results also using the 
Partitioning Around Medoids (PAM) 
method [Kaufman and Rousseeuw 90] as base and 
combination clustering algorithm: with both data sets 
PMO and RS ensembles achieved equal or better 
results than single PAM clustering (data not shown).  

It is worth noting that with both data sets PMO 
ensembles provide more stable results than RS 
ensembles, with a significantly lower dispersion of the 
error across the repeated experiments (Fig. 1).  

 

 
(a) 

 
(b) 

Figure 1. Boxplots of the errors with  DNA 
microarray data. Single hierarchical clustering, PMO 
and RS ensembles with different 1 + e  distortions are 
compared, using 30 replications for each experiment, 
and 50 clusterings for each ensemble. The thin lines 
inside the boxes represent the median value. The error 
achieved with single hierarchical clustering is 
represented by the horizontal dash-dotted line. (a) 
DLBCL-FL data set (b) Primary-Metastasis DNA 
microarray data. 
 

4. Conclusions 
We extended the RS approach to more general 

randomized projections that satisfy the JL lemma 
(Sect. 1.2), introducing a corresponding family of new 
ensemble clustering methods (PMO, RS, Achlioptas) 
based on randomized embeddings. 

Moreover we proposed a principled way to choose 
the dimension of the projected subspace, according to 
the JL lemma.  

RE-Clust ensembles may improve the accuracy 
and the reliability of clustering algorithms, and they 
are well-suited to the unsupervised analysis of DNA 
microarray data. Indeed RE-Clust ensembles can 
improve single clustering when a set of redundant 
features is involved, and this is exactly the case of 
gene expression data clustering problems.  

An ongoing development of this work consists in a 
fuzzy extension of our algorithmic scheme. Indeed by 
substituting the characteristic function with a fuzzy or 
possibilistic membership, and the algebraic product 
with a more general t-norm (step 7, Sect. 2), we can 
obtain a fuzzy or a possibilistic version of the Re-Clust 
algorithm.   

ACKNOWLEDGMENT 
The present work has been developed in the 

context of the CIMAINA Center of Excellence, and it 
was partially funded by the italian COFIN project 
Linguaggi formali ed automi: metodi, modelli ed 
applicazioni.  

REFERENCES 
D. Achlioptas. Database-friendly random projections.  
In P. Buneman, editor, Proc. ACM Symp. on the Principles of 
Database Systems, Contemporary Mathematics, pages 274-281, 
New York, NY, USA, 2001. ACM Press.  

R. Bellman. Adaptive Control Processes: a Guided Tour.  
Princeton University Press, New Jersey, 1961.  

E. Bingham and H. Mannila. Random projection in 
dimensionality reduction: Applications to image and text data.  
In Proc. of KDD 01, San Francisco, CA, USA, 2001. ACM.  

S. Dudoit and J. Fridlyand. A prediction-based resampling 
method for estimating the number of clusters in a dataset.  
Genome Biology, 3(7):1-21, 2002.  

S. Dudoit and J. Fridlyand.  Bagging to improve the accuracy 
of a clustering procedure. Bioinformatics, 19(9):1090-1099, 
2003.  

T.S. Furey, N. Cristianini, N. Duffy, D. Bednarski, 
M. Schummer, and D. Haussler. Support vector machine 
classification and validation of cancer tissue samples using 
microarray expression data. Bioinformatics, 16(10):906-914, 
2000.  

T.R. Golub et al. Molecular Classification of Cancer: Class 
Discovery and Class Prediction by Gene Expression 
Monitoring. Science, 286:531-537, 1999.  

I. Guyon and A. Elisseeff. An Introduction to Variable and 
Feature Selection. Journal of Machine Learning Research, 
3:1157-1182, 2003.  

T.K. Ho. The random subspace method for constructing 
decision forests. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 20(8):832-844, 1998.  

X. Hu and I. Yoo. Cluster ensemble and its applications in gene 
expression analysis. In Proc. 2nd Asia-Pacific Bioinformatics 
Conference, pages 297-302, Dunedin, New-Zealand, 2004.  

W.B. Johnson and J. Lindenstrauss. Extensions of Lipshitz 
mapping into Hilbert space. In Conference in modern analysis 
and probability, volume 26 of Contemporary Mathematics, 
pages 189-206. Amer. Math. Soc., 1984.  



SETIT2007  
 

 - 6 - 

L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An 
Introduction to Cluster Analysis. Wiley, New York, 1990.  

S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus 
Clustering: A Resampling-based Method for Class Discovery 
and Visualization of Gene Expression Microarray Data.  
Machine Learning, 52:91-118, 2003.  

S. Ramaswamy, K. Ross, E. Lander, and T. Golub.  
A molecular signature of metastasis in primary solid tumors.  
Nature Genetics, 33:49-54, 2003.  

A. Rosenwald, R. Wright, W. Chan, J.M. Connors, R.I. Campo, 
E.and Fisher, R.D. Gascoyne, H.K. Muller-Hermelink, E.B. 
Smeland, J. Giltnane, E. Hurt, H. Zhao, L. Averett, L. Yang, 
W. Wilson, E. Jaffe, R. Simon, R.D. Klausner, J. Powell, P.L. 
Duffey, D.L. Longo, T.C. Greiner, D. Weisenburger, W.G. 
Sanger, B. Dave, J. Lynch, J. Vose, J. Armitage, E. Montserrat, 
A. Lopez-Guillermo, T. Grogan, T. Miller, M. LeBlanc, G. Ott, 
S. Kvaloy, J. Delabie, H. Holte, P. Krajci, T. Stokke, and L.M. 
Staudt.  The use of molecular profiling to predict survival after 
chemoterapy for diffuse large-b-cell lymphoma.  
New England Journal of Medicine, 346(25):1937-1947, 2002.  

M. Shipp, K. Ross, P. Tamayo, A. Weng, J. Kutok, R. Aguiar, 
M. Gaasenbeek, M. Angelo, M. Reich, G. Pinkus, T. Ray, 
M. Koval, K. Last, A. Norton, T. Lister, J. Mesirov, 
D. Neuberg, E. Lander, J. Aster, and T. Golub.  
Diffuse large B-cell lymphoma outcome prediction by gene-
expression profiling and supervised machine learning.  
Nature Medicine, 8(1):68-74, 2002.  

M. Smolkin and D. Gosh. Cluster stability scores for 
microarray data in cancer studies. BMC Bioinformatics, 36(4), 
2003.  

J.H. Ward. Hierarchical grouping to optimize an objective 
function.  J. Am. Stat. Assoc., 58:236-244, 1963.  

 


