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Abstract. The reliability of clusters discovered by a given clustering algorithm may
be estimated by means of methods based on the concept of stability with respect
to ”random perturbations” of the data. In this context, a major problem is to es-
timate the confidence of the measures of reliability; recently proposed procedures
realizing this task are correct under the assumption that some probability distribu-
tions are normal. Here we discuss a partially ”distribution independent” method to
assess the statistical significance of the discovered clusterings. Preliminary numerical
experiments show the effectiveness of the proposed approach.

1 Introduction

Many clustering algorithms require to ”a priori” know the number of clusters to be cor-
rectly applied to the unsupervised analysis of the data. In this context, several methods
based on the concept of stability have been proposed to estimate the ”optimal” num-
ber of clusters in clustered data [1, 2]: multiple clusterings are obtained by introducing
perturbations into the original data, and a clustering is considered reliable if it is ap-
proximately maintained across multiple perturbations.

Different procedures have been proposed to randomly perturb the data, ranging from
bootstrapping techniques [1], to noise injection into the data [3] or random projections
into lower dimensional subspaces [4].

For instance, Ben-Hur, Ellisseeff and Guyon proposed to perturb the original data
through subsampling procedures, applying then a suitable clustering algorithm to multi-
ple instances of subsampled data; after estimating the stability of the obtained solutions
through a pairwise clustering similarity measure, they assessed the ”optimal” number
of clusters by means of a visual inspection of the similarity measures across different
numbers of clusters [5].

Even if several works showed that this general approach is effective in discovering
structures in complex data [2, 4], a major problem is to estimate the statistical sig-
nificance of the structures discovered by clustering algorithms. In [6], it is proposed a
χ2-based statistical test of hypothesis to assess the significance of the ”optimal” number
of clusters: however, some assumptions about the distribution of the similarity measures
are needed to estimate the reliability of the obtained clusterings.

In this paper we propose a new distribution-free approach that does not assume any
”a priori” distribution of the similarity measures. In the next section we summarize the
problem of the assessment of the reliability of a clustering procedure using a stability-
based approach. Then we present the method based on Bernstein inequality [7] to assess
the statistical significance of the clusterings discovered by a given clustering algorithm,
and in the last section we present some numerical experiments to show the effectiveness
of the proposed approach.



2 Model order selection through stability based procedures

Let be C a clustering algorithm, ρ(D) a given random perturbation procedure applied
to a data set D and sim a suitable similarity measure between two clusterings (e.g.
the Fowlkes and Mallows similarity). For instance ρ may be a random projection from
a high dimensional to a low dimensional subspace [8], or a bootstrap procedure to
sample a random subset of data from the original data set D [5]; for the similarity
measure between two clusterings we may use, for instance, the Jaccard or the Fowlkes
and Mallows coefficient [9].

We define Sk (0 ≤ Sk ≤ 1) as the random variable given by the similarity between
two k-clusterings obtained by applying a clustering algorithm C to pairs D1 and D2 of
random independently perturbed data. The intuitive idea is that if Sk is concentrated
close to 1, the corresponding clustering is stable with respect to a given controlled
perturbation and hence it is reliable.

Let be fk(s) its density function, and

Fk(s̄) =

∫ s̄

−∞
fk(s)ds (1)

its cumulative distribution function.
A parameter of concentration implicitly used in [5] is the integral g(k) of the cumu-

lative distribution Fk:

g(k) =

∫ 1

0

Fk(s)ds (2)

We can observe the following facts:
Fact 1: g(k) is strictly related to the expectation of Sk; indeed:

E[Sk] =

∫ 1

0

sfk(s)ds =

∫ 1

0

sF ′
k(s)ds = 1−

∫ 1

0

Fk(s)ds = 1− g(k) (3)

Fact 2: if g(k) ' 0, Sk in concentrated close to 1; indeed, from 0 ≤ Sk ≤ 1 it follows
S2

k ≤ Sk; hence:

V ar[Sk] = E[S2
k ]− E[Sk]

2 ≤ E[Sk]− E[Sk]
2 = g(k)(1− g(k)) (4)

Hence, g(k) ' 0 implies V ar[Sk] ' 0.
In conclusion, considerings Facts 1 and 2, g(k) or equivalently E[Sk] can be used as

a good index of the reliability of the k-clusterings (clusterings with k clusters).
For every k (2 ≤ k ≤ H +1), we can estimate E[Sk] by means of multiple similarity

measures Skj:

Skj = sim
(
C(ρ

(1)
kj (D), k), C(ρ

(2)
kj (D), k)

)
, 1 ≤ j ≤ n (5)

Skj represents the similarity between two k-clusterings obtained through the application

of the algorithm C to the perturbed data ρ
(1)
kj (D) and ρ

(2)
kj (D).

E[Sk] may be estimated by the empirical means ξk:

ξk =
n∑

j=1

Skj

n
(6)



We may perform a sorting of the ξk:

(ξ2, ξ3, . . . , ξH+1)
sort→ (ξp(1), ξp(2), . . . , ξp(H)) (7)

where p is the index permutation such that ξp(1) ≥ ξp(2) ≥ . . . ≥ ξp(H).
Exploiting the ordering of the empirical means that represents the most reliable p(1)-

clustering down to the least reliable p(H)-clustering, we would establish which are the
significant clusterings (if any) discovered in the data, considering that eq.3 represents
the ”goodness” of the clustering in terms of its stability.

To this end we would estimate if for a given r, 2 ≤ r ≤ H, there exists a statistically
significant difference between the reliability of the best p(1) clustering and the p(r)
clustering. In other words we may state the null hypothesis H0 and the alternative
hypothesis in the following way:

H0: p(1) clustering is not more reliable than p(r) clustering, that is E[Sp(1)] ≤ E[Sp(r)]
Ha: p(1) clustering is more reliable than p(r) clustering, that is E[Sp(1)] > E[Sp(r)]

3 Hypothesis testing based on Bernstein inequality

We briefly recall the Bernstein inequality, because this inequality is used to build-up
our proposed hypothesis testing procedure.

Bernstein inequality. If Y1, Y2, . . . , Yn are independent random variables s.t. 0 ≤
Yi ≤ 1, with µ = E[Yi], σ

2 = V ar[Yi], Ȳ =
∑

Yi/n then

Prob{Ȳ − µ > ∆} ≤ e
−n∆2

2σ2+2/3∆ (8)

Our goal is to apply the Bernstein inequality to assess the significance of a given k-
clustering with respect to another k′-clustering, k 6= k′, exploiting the ordering of the
computed empirical means of the similarity measures (eq. 7).

Consider the following random variables:

Pi = Sp(1) − Sp(i) and Xi = ξp(1) − ξp(i) (9)

We start considering the first and last ranked clustering p(1) and p(H). In this case the
above null hypothesis H0 becomes: E[Sp(1)] ≤ E[Sp(H)], that is: E[Sp(1)] − E[Sp(H)] =
E[PH ] ≤ 0. The distribution of the random variable XH (eq. 9) is in general unknown;
anyway note that in the Bernstein inequality no assumption is made about the distri-
bution of the random variables Yi (eq. 8). Hence, fixing a parameter ∆ ≥ 0, considering
true the null hypothesis E[PH ] ≤ 0, and using Bernstein inequality, we have:

Prob{XH ≥ ∆} ≤ Prob{XH − E[PH ] ≥ ∆} ≤ e
−n∆2

2σ2+2/3∆ (10)

Considering an instance (a measured value) X̂H of the random variable XH , if we
let ∆ = X̂H we obtain the following probability of type I error:

Perr{XH ≥ X̂H} ≤ e
−nX̂2

H
2σ2

H
+2/3X̂H

with σ2
H = σ2

p(1) + σ2
p(H).

If Perr{XH ≥ X̂H} < α, we reject the null hypothesis: a significant difference be-
tween the two clusterings is detected at α significance level and we continue by testing
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Figure 1: P-values computed for different number of clusters. Possibly significant and not significant clusterings
detected at α-significance level.

the p(H − 1) clustering. More in general if the null hypothesis has been rejected for the
p(H − r + 1) clustering, 1 ≤ r ≤ H − 2 then we consider the p(H − r) clustering, and
by union bound we can estimate the type I error:

Perr(H − r) = Prob{
∨

H−r≤i≤H

Xi ≥ X̂i} ≤
H∑

i=H−r

Prob{Xi ≥ X̂i} ≤
H∑

i=H−r

e
−nX̂2

i
2σ2

i
+2/3X̂i

(11)
As in the previous case, if Perr(H − r) < α we reject the null hypothesis: a significant
difference is detected between the reliability of the p(1) and p(H− r) clustering and we
iteratively continue the procedure estimating Perr(H − r − 1).

This procedure stops if either of these cases succeeds:
I) The null hypothesis is rejected till to r = H−2, that is ∀r, 1 ≤ r ≤ H−2, Perr(H−
r) < α: in this case all the possible hypotheses have been rejected and the only reliable
clustering at α-significance level is the top ranked one, that is the p(1) clustering.
II) The null hypothesis cannot be rejected for r < H − 2, that is, ∃r, 1 ≤ r ≤ H −
2, Perr(H− r) ≥ α: in this case the clusterings that are significantly less reliable than
the top ranked p(1) clustering are the p(r + 1), p(r + 2), . . . , p(H) clusterings.

Note that in this second case we cannot state that there is no significant difference
between the first r top-ranked clusterings, since the upper bound provided by the Bern-
stein inequality is not guaranteed to be tight. This situation is depicted in Fig. 1. In this
case, for a given α-significance level, clusterings from p(4) to p(H) are significantly less
reliable than the top ranked clustering, but we cannot say anything about the reliability
of p(2) and p(3) clusters.

To answer to this question, we may apply the χ2-based hypothesis testing proposed
in [6] to the remaining top ranked clusterings to establish which of them are significant
at α level, but in this case we need to assume that the similarity measures between
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Figure 2: Synthetic sample: data projected into the two components with highest variance, by means of
Principal Component Analysis.

pairs of clusterings are distributed according to a normal distribution. For instance, in
the case of Fig. 1, we could apply the the χ2-based test to the clusterings p(1), p(2) and
p(3)).

4 Numerical experiments

We present some preliminary experiments with high dimensional synthetic data and
gene expression data to assess the effectiveness of the proposed method. In particular
we propose an experiment with a 1000-dimensional synthetic multivariate gaussian data
set, characterized by a two-level hierarchical structure, highlighted by the projection of
the data into the two main principal components (Fig. 2): indeed a two-level structure,
with respectively 2 and 6 clusters is self-evident in the data. To perturb the data we ap-
plied Plus-Minus-One random projections [4] from a 1000 to a 479-dimensional subspace
using the clusterv R library [10] and developing a new R package (MOSCLUST, Model
Order Selection for CLUSTering) for implementing the Bernstein-based hypothesis test-
ing procedure. We applied the Prediction Around Medoids clustering algorithm [11],
considering the reliability of clusterings composed from 2 to 10 clusters. The p-values
computed according to our hypothesis testing procedure based on Bernstein inequality
are summarized in Table 1.

In Tab. 1 the clusterings are sorted according to the value of the empirical means
ξ of the similarity measures computed according to eq. 6. Accordingly to the known

Table 1: Synthetic data set. P-values computed according to the Bernstein inequality for different numbers
of clusters. ξ are empirical means of the similarity measures computed according to eq. 6. The clusterings are
sorted according to ξ.

Num.clusters p-values ξ
2 ———- 1.0000
6 1.0000e+00 1.0000
7 3.5932e-06 0.9217
8 7.8628e-10 0.8711
9 8.7535e-14 0.8132
5 1.4194e-15 0.8090
3 1.0828e-16 0.8072
10 8.5029e-17 0.7715
4 5.6677e-20 0.7642



Table 2: Leukemia data set. P-values computed according to the Bernstein inequality for different numbers
of clusters. ξ are empirical means of the similarity measures computed according to eq. 6. The clusterings are
sorted according to ξ.

Num.clusters p-values ξ
2 ———- 0.8874
3 2.1418e-07 0.7671
4 4.7712e-11 0.7078
5 2.5084e-14 0.6607
7 4.6057e-15 0.6352
6 1.4496e-15 0.6289
8 6.5054e-16 0.6185
10 3.0212e-16 0.6162
9 1.2274e-17 0.5968

characteristics of these data, with a significance level α = 0.01 all the clusterings except
the clustering with 6 clusters are considered significantly less reliable than the first
top ranked clustering (indeed their p-values are all largely below 0.01). Hence only the
clustering with 6 clusters is considered potentially reliable as the top ranked one (a
2-clustering).

As a second example we propose an experiment with DNA microarray data, using
the publicly available Leukemia data set [12]. For these experiments we filtered the genes
according to the procedures described in [12]. We used the classical c-mean clustering
algorithm and Plus-Minus-One random projections from the original space of 3574 gene
expression levels to 1711-dimensional subspaces according according to a bounded data
distortion of about 10% [4].

Tab. 2 shows the p-values of the clusterings sorted according to their ξ values (eq. 6).
Our proposed procedure detects the 2 − clustering as the most reliable at 0.01 level,
according to the fact that two biologically meaningful groups (ALL, acute lymphoblas-
tic leukemia and AML, acute myeloid leukemia) are present in the data. Choosing a
significance level α = 10−7 we cannot reject the null hypothesis that a 2-clustering is
less or equally reliable than a 3-clustering: indeed ALL can be subdivided into B-cell
and T-cell ALL, obtaining in this case 3 classes.

5 Conclusion

We proposed a test of hypothesis based on Bernstein inequality to estimate if there is
a significant difference between the reliability of two clusterings performed on the same
data. It does not assume that the similarity measures used to estimate the reliability
of the clusterings are distributed according to a normal or any other distribution. This
testing procedure may be applied to any stability-based procedure to assess the relia-
bility of the clusterings, using random projections, bootstrapping techniques or noise
injection procedures to perturb the original data.
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