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Abstract

Background: In recent years unsupervised ensemble clustering methods have been successfully

applied to DNA microarray data analysis to improve the accuracy and the reliability of

clustering results. Nevertheless, a major problem is represented by the fact that classes of

functionally correlated examples (e.g. subclasses of diseases characterized at bio-molecular

level) are not in general clearly separable, and in many cases the same gene may belong to

different functional classes (e.g. may participate to different biological processes).

Results: We propose an ensemble clustering algorithm scheme, based on a fuzzy approach, that

directly permit to deal with overlapping classes or with genes or samples that may belong to

more clusters at the same time. From our algorithmic scheme several fuzzy ensemble clustering

algorithms may be derived, according to the way the multiple clusterings are combined and the

consensus clustering is generated. We test some of the proposed ensemble algorithms with two

DNA microarray data sets available on the web, comparing the results with other single and

ensemble clustering methods.

Conclusions: Our proposed fuzzy ensemble approach may be applied to discover classes of

co-expressed genes or subclasses of functionally related examples, and in principle it may be
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applied for the unsupervised analysis of different types of complex bio-molecular data. Fuzzy

ensemble algorithms can assign each gene/sample to multiple classes and can estimate and

improve the accuracy and the reliability of the discovered clusterings, as shown by our

experimental results.

Background

Unsupervised clustering methods have been successfully applied to DNA microarray data

analysis, considering in particular two main problems: the discovery of new subclasses of

diseases or functionally correlated examples and the detection of subsets of co-expressed

genes as a proxy of co-regulated genes [1–3]. Different unsupervised ensemble methods

have been proposed to improve the accuracy and the reliability of clustering results in

bioinformatics applications [4–7].

A major problem with these approaches is represented by the biological fact that classes of

patients or classes of functionally related genes are sometimes not clearly defined. For

instance, it is known that a single gene product may participate to different biological

processes and as a consequence it may be at the same time expressed with different subsets

of co-expressed genes.

To take into account these items we propose a fuzzy approach, in order to consider the

inherent fuzziness of clusters discovered in gene expression data [8]. The main idea of this

work is to combine the accuracy and the effectiveness of the ensemble clustering techniques

with the expressive capacity of the fuzzy sets, to obtain clustering algorithms both reliable

and able to express the uncertainty of the data.

Methods

We propose a fuzzy ensemble algorithmic scheme, from which different ensemble clustering

algorithms may be derived. At first we perturb the data according to a given perturbation

procedure: resampling or noise injection techniques could be in principle applied, but we
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choose random projections to lower dimensional subspaces [9, 10] in order to exploit the

high dimensionality of DNA microarray data. Then, multiple fuzzy k-means

clusterings [11] are performed on the projected data; note that it is likely to obtain

different clusterings, since the clustering algorithm is applied to different ”views” of the

data. The obtained multiple clusterings are successively aggregated using a fuzzy

approach. According to the way the multiple clustering are combined, the ”consensus”

ensemble clustering may result in crisp clusters that may overlap or in a fuzzy partition by

which each example may belong to each cluster with a certain fuzzy membership.

The structure of the fuzzy ensemble algorithmic scheme can be summarized as follows:

1. Random projections: generation of multiple instances (views) of the data through

random projections

2. Generation of multiple fuzzy clusterings: the fuzzy k-means algorithm is applied to

the projected data obtained from the previous step; the output of the algorithm is a

membership matrix where each element represents the membership of an example to

a particular cluster.

3. “Crispization” of the base clusterings. This step is executed if a ”crisp” aggregation is

performed. The fuzzy clusterings obtained in the previous step can be “defuzzified”

through hard-clustering techniques, by which each example is assigned to the cluster

with the largest membership, or through α-cut techniques, where an example is

assigned to a cluster only if its membership is larger than a prefixed value α.

4. Aggregation. If a fuzzy aggregation is performed, the base clusterings are combined,

using a square similarity matrix [4] whose elements are generated through fuzzy

t-norms applied to the membership functions of each pair of examples. If a crisp

aggregation is performed, the similarity matrix is built using the product of the

characteristic function between each pair of examples.

5. Clustering in the ”embedded” similarity space. The similarity matrix induces a new

representation of the data based on the pairwise similarity between pairs of examples:

the fuzzy k-means clustering algorithm is applied to the rows (or equivalently to the

columns) of the similarity matrix.
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6. Consensus clustering. The consensus clustering could be represented by the overall

consensus membership matrix, resulting in a fuzzy representation of the consensus

clustering. Alternatively, we may apply the same crispization techniques used at step

3 to transform the fuzzy consensus clustering to a crisp one.

We may observe that considering the possibility of applying crisp or fuzzy approaches at

steps 3, 4 and 6, we can obtain 9 different algorithms, exploiting different combinations of

aggregation and consensus clustering techniques. For instance, combining a fuzzy

aggregation with a consensus clustering obtained trough α-cut we obtain from the

algorithmic scheme a fuzzy-alpha ensemble clustering algorithm, while using a

hard-clustering crispization technique for aggregation and a fuzzy consensus we obtain a

max-fuzzy ensemble clustering. The two names separated by a hyphen (e.g. fuzzy-alpha)

refer respectively to the type of aggregation and consensus steps. As an example of the

fuzzy ensemble algorithms that may be derived from the general algorithmic scheme, we

provide here the high-level pseudo-code of the algorithm based on fuzzy aggregation and

hard-clustering consensus (fuzzy-max clustering ensemble algorithm).

Fuzzy-max ensemble clustering:

Input:

- a data set X = {x1, x2, . . . , xn}, stored in a d× n D matrix.

- an integer k (number of clusters)

- an integer m (number of clusterings)

- the fuzzy k-means clustering algorithm Cf

- a procedure the realizes the randomized map µ

- an integer d′ (dimension of the projected subspace)

- a function τ that defines the t-norm

begin algorithm

(1) For each i, j ∈ {1, . . . , n} do Mij = 0

(2) Repeat for t = 1 to m
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(3) Rt = Generate projection matrix (d′, µ)

(4) Dt = Rt ·D

(5) U (t) = Cf (Dt, k, z)

(6) For each i, j ∈ {1, . . . , n}

M
(t)
ij =

∑k
s=1 τ(U (t)

si ,U (t)
sj )

end repeat

(7)MC =
∑c

t=1
M(t)

m

(8) < A1, A2, . . . , Ak >= Cf (M
C , k, z)

end algorithm.

Output:

- the final clustering C =< A1, A2, . . . , Ak >

- the cumulative similarity matrix MC .

Inside the mean loop (steps 2-6) the procedure Generate projection matrix produces a

d′× d Rt matrix according to a given random map µ [9], that it is used to randomly project

the original data matrix D into a d′ × n Dt projected data matrix (step 4). In step (5) the

fuzzy k-means algorithm Cf with a given fuzziness z is applied to Dt and a k-clustering

represented by its U (t) membership matrix is achieved. Hence the corresponding similarity

matrix M (t) is computed, using a given t-norm (e.g. the algebraic product) (step 6). Note

that U is a fuzzy membership matrix (where the rows are clusters and the columns

examples). In (7) the ”cumulative” similarity matrix MC is obtained by averaging across

the similarity matrices computed in the main loop. Finally, the consensus clustering is

obtained by applying the fuzzy k-means algorithm to the rows of the similarity matrix MC

and by assigning each example to the cluster with the maximum membership (step 8).
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Table 1: Primary-metastasis gene expression data: compared results between fuzzy ensemble
clustering methods (Fuzzy-Max, Fuzzy-Alpha, Max-Max and Max-Alpha) and other ensem-
ble and “single” clustering algorithms.

Algorithms Median error Std. Dev.
Fuzzy-Max 0.2763 0.0477

Fuzzy-Alpha 0.2763 0.0560
Max-Max 0.3684 0.0854

Max-Alpha 0.3684 0.0910

Rand-Clust 0.3289 0.0088
Fuzzy ”single” 0.3684 –

Hierarchical ”single” 0.3553 –

Results

To show the effectiveness of the proposed approach, we analyzed two DNA microarray data

sets available on the web: the DLBCL-FL data set, composed by tumor specimens from 58

Diffuse Large B-Cell Lymphoma (DLBCL) and 19 Follicular Lymphoma (FL) patients [12];

the Primary-Metastasis (PM) data set, that contains expression values in Affymetrix’s

scaled average difference units for 64 primary adenocarcinomas and 12 metastatic

adenocarcinomas (lung, breast, prostate, colon, ovary, and uterus) from unmatched

patients prior to any treatment [13]. For each ensemble method we randomly repeated the

randomized projections 20 times, and each time we built fuzzy ensembles composed by 20

base clusterings. Since clustering does not univocally associate a label to the examples we

evaluated the error by choosing for each clustering the permutation of the classes that best

matches the ”a priori” known ”true” classes.

We compared our proposed fuzzy-max and fuzzy-alpha ensemble clusterings, both

characterized by a fuzzy aggregation with max-alpha and max-max methods, both

characterized by a crisp aggregation of multiple clusterings. As baseline methods we

considered ”crisp” ensemble methods based on random projections (Rand-clust) [9], and

”single” clustering algorithms (hierarchical clustering and fuzzy k-means).

The Tables 1 and 2 show the compared numerical results of the experiments on the PM

and DLBCL-FL data sets respectively. Fuzzy ensemble methods obtain significantly better
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Table 2: DLBCL-FL gene expression data: compared results between fuzzy ensemble clus-
tering methods (Fuzzy-Max, Fuzzy-Alpha, Max-Max and Max-Alpha) and other ensemble
and “single” clustering algorithms.

Algorithms Median error Std. Dev.
Fuzzy-Max 0.0779 0.1163

Fuzzy-Alpha 0.2727 0.1142
Max-Max 0.2987 0.0157

Max-Alpha 0.2987 0.0127

Rand-Clust 0.1039 0.0023
Fuzzy ”single” 0.2987 –

Hierarchical ”single” 0.1039 –

results with respect to the other methods (considering the median error). Anyway note

that the larger standard deviation (with respect to the Rand-clust ensemble algorithm)

denotes a higher instability of the fuzzy approach, and with the DLBCL-FL data set

Fuzzy-Alpha achieves significantly worse results than Fuzzy-Max and Rand-clust ensemble

methods. It is also worth noting that the fuzzy ensemble approach significantly

outperforms ”single” fuzzy k-means runs. Moreover results with the Max-max and

Max-alpha ensemble clustering algorithms, where a crispization step is performed in the

aggregation phase (see the algorithmic scheme), show that the fuzzy aggregation is

essential to improve the accuracy of clustering results (Table 1 and 2).

Conclusions

We proposed a fuzzy ensemble clustering algorithmic scheme from which several ensemble

clustering methods may be derived. By this approach we can identify clusters of

genes/examples characterized by uncertain boundaries, or we can assign gene/examples to

multiple clusters, according to the characteristics of gene expression data. Results with

DNA microarray data show the effectiveness of the proposed approach, but fuzzy ensemble

clustering methods may be also applied to the unsupervised analysis of other types of

complex bio-molecular data.
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