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Abstract. Two major problems related the unsupervised analysis of
gene expression data are represented by the accuracy and reliability of
the discovered clusters, and by the biological fact that classes of examples
or classes of functionally related genes are sometimes not clearly defined.
To face these items, we propose a fuzzy ensemble clustering approach to
both improve the accuracy of clustering results and to take into account
the inherent fuzziness of biological and bio-medical gene expression data.
Preliminary results with DNA microarray data of lymphoma and adeno-
carcinoma patients show the effectiveness of the proposed approach.

1 Introduction

In recent years unsupervised clustering methods have been successfully applied
to DNA microarray data analysis, considering in particular two main problems:
the discovery of new subclasses of diseases or functionally correlated examples
and the detection of subsets of co-expressed genes as a proxy of co-regulated
genes [1]. Different unsupervised ensemble approaches have been proposed to
improve the accuracy and the reliability of clustering results [2, 3, 4]. In bioinfor-
matics applications, recently proposed methods based on random projections [5]
have been also successfully applied to gene expression data analysis [6].

A major problem with these approaches is represented by the biological fact
that classes of patients or classes of functionally related genes are sometimes not
clearly defined. For instance, it is well-known that a single gene product may
participate to different biological processes and as a consequence it may be at
the same time expressed with different subsets of co-expressed genes.

To take into account these items we propose a fuzzy approach, in order to
consider the inherent fuzziness of clusters discovered in gene expression data [7].
The main idea of this work is to combine the accuracy and the effectiveness
of the ensemble clustering techniques based on random projections [5], with
the expressive capacity of the fuzzy sets, to obtain clustering algorithms both
reliable and able to express the uncertainty of the data. In the next section
we briefly introduce random projections, then we present our proposed fuzzy
ensemble clustering method, and we show some preliminary results with two
DNA microarray data sets.



2 Random projections.

Our proposed method perturb the original data using random projections pu :
R? — RY from high d-dimensional spaces to lower d’-dimensional subspaces.

A key problem consists in finding a d’ such that for every pair of data
p,q € R?, the distances between the projections yu(p) and pu(q) are approxi-
mately preserved with high probability. A natural measure of the approximation
is the distortion dist,,:
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If dist, (p, q) = 1, the distances are preserved; if 1 — e < dist,(p,q) < 1+ ¢, we
say that an e-distortion level is introduced.

It has been shown that using random projections that obey Johnson-Linden-
strauss (JL) lemma [8] we may perturb the data introducing only bounded distor-
tions, approximately preserving the metric structure of the original data (see [9]
for more details). Examples of random projections related with the JL Lemma
can be found in [9, 5].

3 Fuzzy ensemble clustering based on random projections

The general structure of the algorithm is similar to the one proposed in [5]:
data are perturbed through random projections to lower dimensional subspaces
and multiple clusterings are performed on the projected data; note that it is
likely to obtain different clusterings, since the clustering algorithm is applied to
different ”views” of the data. Then the clusterings are combined, and a consensus
ensemble clustering is computed. The main difference of our proposed method
consists in using a fuzzy k-means algorithm as base clustering and in applying
a fuzzy approach to the combination and the consensus steps of the ensemble
algorithm.

The main steps of the fuzzy ensemble clustering algorithm can be summarized
as follows:

1. Random projections. Multiple instances (views) of compressed data are ob-
tained using random projections.

2. Generation of multiple fuzzy clusterings. The fuzzy k-means algorithm is
applied to the instances of data obtained from the previous step. The output
of the algorithm is a membership matrix, where each element represents the
membership of an example to a particular cluster.

3. Aggregation. The fuzzy clusterings are combined, using a similarity ma-
trix [2]. The generation of each element of the matrix is obtained through
fuzzy t-norms.

4. Consensus clustering. The ensemble clustering is built up by applying the
fuzzy k-means algorithm to the rows of the similarity matrix obtained in the
previous step.



The Aggregation step is performed by using a square symmetric similarity
matrix M, where each element represents the ”level of agreement between” each
pair of examples:

k
M; ;= ZT(us,i7us,j); (2)
s=1

where k is the number of clusters; 4, j indices of the n examples, 1 < ¢,j < n;
U is a fuzzy membership matrix (where the rows are clusters and the columns
examples), and finally 7 is a suitable fuzzy t-norm (e.g. an algebraic product).
Note that M; ; can be interpreted as the ”common membership” of two examples
1 and j to the same cluster.

The similarity matrices M obtained through c¢ repeated application of the
fuzzy k-means clustering algorithm are aggregated simply by averaging: in this
way we achieve the cumulative similarity matrix M

1 C
MG == M; (3)
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The Consensus clustering step is performed by applying the fuzzy-k-means
clustering to the rows of M, thus obtaining the consensus membership matrix
UC . Indeed note that i*" row of M represents the ”common membership” to the
same cluster of the i*" example with respect to all the other examples, averaged
across multiple clusterings. In this sense the rows can be interpreted as a new
”feature space” for the analyzed examples.

The consensus clusters can be obtained by choosing one of two classical
”crispization” techniques:

Hard-clustering:
1 & arg max, US =r
H __ s Ug;
Xri = {0 otherwise. (4)

a-cut:

()

= 1 U >a
T 0 otherwise.

where x,; is the characteristic function for the cluster r: that is x,; = 1 if the
i*" example belongs to the 7" cluster, x,; = 0 otherwise; 1 < s < k;1 < i < n,
0 < a < 1, and U® is the consensus fuzzy membership matrix obtained by
applying the fuzzy k-means algorithm to MC.
The pseudo-code of the algorithm is reported below:
Fuzzy ensemble clustering algorithm :
Input:
- a data set X = {x1,22,...,2,}, stored in a d X n D matrix.
- an integer k (number of clusters)
- an integer ¢ (number of clusterings)
- the fuzzy k-means clustering algorithm Cg
- a procedure the realizes the randomized map p
- an integer d’ (dimension of the projected subspace)



- a function 7 that defines the t-norm
begin algorithm
(1) For eachi,j € {l,...,n} do M;; =0
(2) Repeat fort=1toc
(3) Ry = Generate,projectioanatrix (d,p)

(4) D - D

(5) U cf(Dt,k m)

(6) For eachi,j € {1,...,n}
M(t) Zs 1 T(L[;i),l/{g))

end repeat

()M = B

(8) < Al,Ag, oL A >= Cf(MC,k,m)
end algorithm.
Output:
- the final clustering C' =< Ay, Ag, ..., A >
- the cumulative similarity matrix M.

Note that the dimension d’ of the projected subspace is an input parameter
of the algorithm, but it may be computed according to the JL lemma (Sect. 2),
to approximately preserve the distances between the examples. Inside the mean
loop (steps 2-6) the procedure Generate projection matrix produces a d’ x d
R; matrix according to a given random map p [5], that it is used to randomly
project the original data matrix D into a d’ X n D; projected data matrix (step
4). In step (5) the fuzzy k-means algorithm Cy with a given fuzziness m is applied
to Dy and a k-clustering represented by its &) membership matrix is achieved.
Hence the corresponding similarity matrix M® is computed, using a given t-
norm (step 6). In (7) the ”cumulative” similarity matrix M is obtained by
averaging across the similarity matrices computed in the main loop. Finally, the
consensus clustering is obtained by applying the fuzzy k-means algorithm to the
rows of the similarity matrix M (step 8).

4 Experimental results

4.1 Experimental environment

We considered two DNA microarray data sets available on the web. The first one
(DLBCL-FL data set) is composed by tumor specimens from 58 Diffuse Large B-
Cell Lymphoma (DLBCL) and 19 Follicular Lymphoma (FL) patients [10]. The
second one, the Primary-Metastasis (PM) data set, contains expression values in
Affymetrix’s scaled average difference units for 64 primary adenocarcinomas and
12 metastatic adenocarcinomas (lung, breast, prostate, colon, ovary, and uterus)
from unmatched patients prior to any treatment [11]. In both cases we followed
the same preprocessing and normalization steps described in [10] and [11].
For each ensemble we randomly repeated the randomized projections 20
times, and each time we built fuzzy ensembles composed by 20 base cluster-
ings (choosing projections with bounded 1 4 0.2 distortion, according to the
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Fig. 1. Fuzzy-Alpha ensemble clustering error and unclassified rate with respect to a.
(a) Primary-Metastasis; (b) DLBCL-FL data sets.

JL lemma). We compared results with corresponding ”crisp” ensemble meth-
ods based on random projections proposed in [5] and with ”single” clustering
algorithms (hierarchical clustering and fuzzy-k-means).

Since clustering does not univocally associate a label to the examples, but
only provides a set of clusters, we evaluated the error by choosing for each
clustering the permutation of the classes that best matches the ”a priori” known
”true” classes. More precisely, considering the following clustering function:

f(z):R* =Y, with Y C {1,...,k} (6)

where x is the sample to classify, d its dimension, k the number of the classes;
the error function we applied is the following:

0if (Y|=1AteY)VvY ={)\}
1 otherwise.

coptvn = { @
with ¢ the “real” label of the sample z, Y € Y and {\} is the empty set. Other
loss functions or measures of the performance of clustering algorithms may be
applied, but we chose this modification of the 0/1 loss function to take into
account the multi-label output of fuzzy k-means algorithms.

4.2 Results

To test the performance of the ensemble fuzzy algorithms proposed in this paper,
we compare the results of two versions of the proposed fuzzy ensemble cluster-
ing method with other types of clustering algorithms. The two version are the
fuzzy-maz ensemble clustering, where the “defuzzifaction” of the consensus clus-
tering is obtained through hard clustering (eq. 4), and the fuzzy-alpha ensemble




Table 1. Primary-metastasis gene expression data: compared results between fuzzy
ensemble clustering methods (Fuzzy-Max and Fuzzy-Alpha) and other ensemble and
”single” clustering algorithms.

Algorithms Median error|Std. Dev.
Fuzzy-Max 0.2763 0.0477
Fuzzy-Alpha 0.2763 0.0560
Rand-Clust 0.3289 0.0088
Fuzzy ”single” 0.3684 -
Hierarchical ”single” 0.3553 -

clustering, where the final consensus clustering is “crispized” through the a-cut
operation (eq. 5). The other clustering algorithms considered for comparison are
Rand-clust, a crisp ensemble algorithm based on random projections proposed
in [5], and other ”single” clustering algorithms (hierarchical agglomerative and
fuzzy k-means).

The tables 1 and 2 show the compared numerical results of the experiments
on the PM data set and the DLBCL-FL data set respectively. Fuzzy ensemble
methods obtain better results with respect to the other methods (considering the
median error, see Tab. 1 and 2). Anyway note that the larger standard deviation
(with respect to the Rand-clust ensemble algorithm) denotes a higher instability
of the fuzzy approach, and with the DLBCL-FL data set Fuzzy-Alpha achieves
significantly worse results than Fuzzy-Maz and Rand-clust ensemble methods.

The graphics 1 (a) and 1 (b) represent the performance of the “fuzzy-alpha”
ensemble algorithm (error rate and unclassified rate for every level of alpha-cut
analyzed). The figure shows that we may obtain acceptable results with the
Fuzzy-Alpha method too if we accept a certain rate of unclassified examples

(Fig. 1(b)).

5 Conclusions

The experimental results show that our proposed fuzzy ensemble approach may
be successfully applied to the analysis of gene expression data, even when we

Table 2. DLBCL-FL gene expression data: compared results between fuzzy ensemble
clustering methods (Fuzzy-Max and Fuzzy-Alpha) and other ensemble and ”single”
clustering algorithms.

Algorithms Median error|Std. Dev.
Fuzzy-Max 0.0779 0.1163
Fuzzy-Alpha 0.2727 0.1142
Rand-Clust 0.1039 0.0023
Fuzzy ”single” 0.2987 -
Hierarchical ”single” 0.1039 -




consider data sets with a single certain label for each example. Nevertheless
we know that genes may belong to different biological processes or different
pathways and as a consequence they may belong to different sets of co-expressed
genes. We are planning new experiments with multi-label genes or examples to
show more clearly the effectiveness of the proposed approach and to analyze the
structure of unlabeled data when the boundaries of the clusters are uncertain.

References

[1]
2]

3]

[7]

(8]

[10]

[11]

Dopazo, J.: Functional interpretation of microarray experiments. OMICS 3 (2006)
Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering proce-
dure. Bioinformatics 19 (2003) 1090-1099

Fern, X., Brodley, C.: Random projections for high dimensional data clustering:
A cluster ensemble approach. In Fawcett, T., Mishra, N., eds.: Machine Learning,
Proceedings of the Twentieth International Conference (ICML 2003), Washington
D.C., USA, AAAI Press (2003)

Topchy, A., Jain, A., Puch, W.: Clustering Ensembles: Models of Consensus and
Weak Partitions. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 27 (2005) 1866-1881

Bertoni, A., Valentini, G.: Ensembles based on random projections to improve
the accuracy of clustering algorithms. In: Neural Nets, WIRN 2005. Volume 3931
of Lecture Notes in Computer Science., Springer (2006) 31-37

Bertoni, A., Valentini, G.: Randomized embedding cluster ensembles for gene
expression data analysis. In: SETIT 2007 - IEEE International Conf. on Sciences
of Electronic, Technologies of Information and Telecommunications, Hammamet,
Tunisia (2007)

Gasch, P., Eisen, M.: Exploring the conditional regulation of yeast gene expression
through fuzzy k-means clustering. Genome Biology 3 (2002)

Johnson, W., Lindenstrauss, J.: Extensions of Lipshitz mapping into Hilbert
space. In: Conference in modern analysis and probability. Volume 26 of Contem-
porary Mathematics., Amer. Math. Soc. (1984) 189-206

Bertoni, A., Valentini, G.: Randomized maps for assessing the reliability of pa-
tients clusters in DN A microarray data analyses. Artificial Intelligence in Medicine
37 (2006) 85-109

Shipp, M. et al.: Diffuse large B-cell lymphoma outcome prediction by gene-
expression profiling and supervised machine learning. Nature Medicine 8 (2002)
68-74

Ramaswamy, S., Ross, K., Lander, E., Golub, T.: A molecular signature of metas-
tasis in primary solid tumors. Nature Genetics 33 (2003) 49-54



