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This abstract presents a survey on the aims, the problems and the meth-
ods concerning Cluster Analysis and its applications in genomic data analysis.
With the term Cluster Analysis we refer to a data exploration tool whose goal is
grouping objects of similar kind into their respective categories without a priori
information on their classes. We can look at cluster analysis as a classification
problem with no labeled samples, or without any a priori knowledge about the
way the objects have to be put together. There are several and heterogeneous
problems linked to the cluster analysis and several times they are treated sepa-
rately. In this work we examine these problems, and we illustrate the different
approaches and their applications to Computational Biology and Bioinformat-
ics. The problems related to Cluster Analysis in the context of high-dimensional
genomic data analysis can be summarized as shown in figure 1 . In this figure
each node represents an item of the data exploration problem via cluster analysis
or computational methods used in this kind of data analysis. The edges of this
graph can be mono-directional or bi-directional and, following a path (according
the edge directions), one can see a sequence of steps toward the final goal of
cluster analysis and the relationships between different problems and computa-
tional methods involved in unsupervised genomic data analysis.

As we can see in the figure, the problems tackled with cluster analysis are
particular cases of a more general class of problems: the partitioning problems.
In this class of problems, given a set of objects IV and a set of K functions f =
(f1,---, [K) from the set N to the real numbers, the aim is to find a partition A =
(A1,...,Ak) of the set N that minimizes or maximizes an objective function
9(f1(A1),..., fk(AKk)). In the case of cluster analysis the function defined on
the subsets A; of N is the same for every ¢ and usually it is the sum of the
pairwise similarity between the elements of A; (intra-cluster similarity) or the
ratio between intra-cluster similarity and this sum of the similarity between
clusters (inter-cluster similarity).

The similarity can be seen as the inverse of the distance between objects.
The function g is usually a sum and it should be minimized (if we use distances



Data Driven
Preliminary
Matter Analysis

ﬁher
Approaches
| Graph Theory, Heuristic clustering, "Phisical Modeling” clustering, conceptual clustering, fuzzy clustering ‘
Algorithmic parameters Number of cluster/neurons/centers/other
o Partitional clusterlng
estimation
Tree cutoff level indications
Hierarchical clustellng

|

Principal aim: find the structure
that underlies data providing
partitions that minimize similarity
(nearness) based objective
functions

Blindness way

Stability Based Methods: Single-solution onented assessing:
Statistical meaning over « Single cluster reliability Multiple $°|Ut|°n5
perturbations + Fuzzy membership functions [comparison:
estimations .
7 I » Consensus clustering

i l '/ Solutions space analysis
i = \ b | / Visualizations and T
Between partitions * Sub-sampling - ;

» Random Projections Interactive clustering Dimensionality

» Noise Injection reduction
techniques

Fig. 1.

between objects) or maximized (if we use similarities). In other words, the main
aim of this class of problems is the production of a partition in which data points
belonging to the same subset (cluster) are as similar as possible. So, the first ob-
servation we can make is that the ability to quantify a similarity (or distance)
between two objects is fundamental to clustering algorithms. Hence we need to
choose a similarity measure that allows the set of objects to be embedded in
a metric space. Usually classical distance metrics (e.g. Euclidean, correlation,
cosine, etc.) may be applied, as well as more specific distance or similarity mea-
sures [13]. Most of the clustering approaches can be divided in two major classes:
hierarchical clustering algorithms and partitional clustering algorithms [13], even
if other approaches such as graph-based methods, or probabilistic and mixture
models based clusterings have been recently applied to genomic cluster analy-
sis [14,17,15].

Hierarchical clustering algorithms build (agglomerative algorithms), or breaks
up (divisive algorithms), a hierarchy of clusters. The traditional representation of
this hierarchy is a tree (called a dendrogram), with individual elements as leaves
and a single cluster containing every element as root. Agglomerative algorithms
begin from the leaves of the tree, whereas divisive algorithms begin at the root.

Partitional clustering algorithms attempt to directly decompose the data set
into a set of disjoint clusters. In this class of algorithms the value of the input
parameters (like i.e. the value of K in K-means or the map dimension in Self
Organizing Map approach) plays a key role and in many cases it determines the



final number of clusters. In hierarchical clustering algorithms the same role is
played by the choice of the dendrogram cutting threshold.

A major problem related to cluster analysis is the proper choice of the number
of clusters. To this end we may perform a preliminary statistical analysis on the
set we want to cluster instead of blindly make clustering on it. Moreover, this
first analysis can check the “effective clusterizability” of a set, in other words,
it checks the presence of well localized and well separable homogeneous (by the
similarity point of view) object groups in the set. Several approaches have been
proposed in the literature: for a recent review in the context of genomic and post-
genomic data analysis see, e.g. [12]. In this work we focus on methods based on
the concept of stability, as recently several works showed their effectiveness in
the analysis of genomic data [1]]2][3][4][10].

In these methods many clusterings are obtained by introducing perturbations
into the original set, and the candidate clustering is considered reliable if its
structure is approximately reflected by the clusterings obtained on the perturbed
instances of the data. Informally, the stability of a given clustering is a measure
that quantifies the change the clustering is affected by, after a perturbation of
the original data set. Different procedures have been introduced to randomly
perturb the data, ranging from bootstrapping techniques [1], to noise injection
into the data [16] or random projections into lower dimensional subspaces [3].

The underlying idea of stability-based methods is described in the follow-
ing. Cluster analysis is based on the (almost philosophical) assumption that the
phenomenon that generated the data we want to analyze can be modeled by a
statistical point of view. Can we say how much the statistical model underlying
data has been discovered by a clustering? Can we say how much an assumption
on the artificial model (the clustering) is close to the real model? If we know the
underlying data statistical model then answers to these questions are obtained
in a quite simple way: we generate different data set samples from the same sta-
tistical distribution and then we cluster each sample. If the clusterings obtained
are similar then we can look to each of them as a slightly modified version of a
general stable clustering in which the statistical model underlying data is well
detected. So this approach is useful to test the correctness of some assumptions
on the artificial model (for our purpose, the number of clusters, input values
for parametric clustering algorithms and so on). The “different samples” of the
data set can be obtained simulating the underlying statistical model via different
perturbation techniques.

We need similarity measures between clusterings to test how two different
clusterings are similar, and several classical measures can be applied [13][1]. Re-
cently a novel measure to test similarity between partition on the same set has
been introduced [5][6]. It is based on the entropy of the confusion matrix between
the partitions and its parametric version quantifies also how much two partitions
are in conflict each other.

Usually the objective functions that clustering algorithms tries to minimize has
multiple local minima. It means that multiple and in some cases very different
solutions grant very close optimal values for the objective function. This sug-



gests to analyze the whole solutions space before choose the optimal clustering.
In some novel approaches multiple solutions are compared, by the objective func-
tion value point of view and by the clusters composition point of view both, and
embedded in a viewable map.

Another important path in the graph of the figure 1 crosses the single solution
assessment node. In this case the main aim is providing reliability scores for
each cluster of a clustering and for the membership of each data point to each
cluster. In order to obtain these results, tools based on random projection tech-
niques [7][8] have been modeled. Combining these tools with very simple fuzzy
logic derived concepts [9], membership functions are provided for each data point
and interactive clustering is realized. These tools allow the user to consider only
the sub set of points belonging to clusters (or sub-cluster) whose reliability is
greater than a fixed threshold value. Manually reassignments for a point whose
membership function distribution has a very high entropy are also possible.

In an effective usable environment all the tools implementing these models should
be equipped with procedures that allow the user to easily visualize and manipu-
late data and to this end dimensionality reduction techniques need to be applied.
The integration of different tools that explicitly consider the problems of cluster
validity assessment, clustering reliability and robustness, discovery of multiple
structures underlying the data, as well as data and clustering results visualiza-
tion, are of paramount importance in bioinformatics and bio-medical applica-
tions [11][18].

In the full version of this paper each of the general arguments introduced here
will be discussed in detail, and relevant literature about them will be provided.
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