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Introduction

The regulatory code that determines whether and how a given genetic variant affects the function of a
regulatory element remains poorly understood for most classes of regulatory variation. Indeed the large
majority of bioinformatics tools have been developed to predict the pathogenicity of genetic variants in
coding sequences or conserved splice sites [5].

Computational algorithms for the prediction of non-coding deleterious variants associated with rare
genetic diseases are faced with special challenges owing to the rarity of confirmed pathogenic mutations.
Indeed in this context classical machine learning methods are biased toward neutral variants that consti-
tute the large majority of genetic variation, and are not able to detect the potential deleterious variants
that constitute only a tiny minority of all known genetic variation [8].

We recently proposed hyperSMURF, hyper-ensemble of SMOTE Undersampled Random Forests, an
ensemble approach explicitly designed to deal with the huge imbalance between deleterious and neutral
variants [7], and able to significantly outperform state-of-the-art methods for the prediction of non-coding
variants associated with Mendelian diseases.

Despite its successful application to the detection of deleterious single nucleotide variants (SNV)
as well as to small insertions or deletions (indels), hyperSMURF is a method that depends on several
learning parameters, that strongly influence its overall performances. In this work we experimentally show
that by tuning hyperSMURF parameters we can significantly boost the performance of the method, thus
predicting with significantly better precision and recall rare SNVs associated with Mendelian diseases.

Methods

HyperSMURF is a method specifically designed to provide genome-wide predictions of deleterious (e.g.
disease-associated) variants explicitly taking into account the imbalance that characterize the number of
deleterious variants (positive examples) vs neutral variants (negative examples) in the non-coding human
genome.

To this end two main learning strategies are adopted: 1) Sampling techniques and 2) Ensembling
and hyper-ensembling approaches. By oversampling the small set of available positive examples using
SMOTE [1] and at the same time subsampling the set of negative examples, we can balance the data,
thus avoiding the bias toward the majority class. By training a set of random forests, each one on a differ-
ent sampled and balanced set of the data, we can obtain both accurate and diverse base learners and a
large coverage of the available training data: these features represent key factors for the success of en-
semble methods [4]. Note that with hyperSMURF we have an ensemble of ensembles, since each base
learner is in turn a random forest (i.e. an ensemble of random decision trees), thus obtaining an hyper-
ensemble (ensemble of ensembles) approach. For a detailed description of the hyperSMURF algorithm,
please see [7].

HyperSMURF is characterized by a set of learning parameters (i.e. the number of random forests n,
the oversampling f and the subsampling factor m ) that can significantly affect the overall performance
of the method. Indeed these parameters have a high impact on the runtime and the training success,
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Figure 1: (a): Distribution across 100 different choices of hyperSMURFparameters (n, f,m) of the
AUPRC values obtained by cross-validation on the training data; (b) Comparison of precision-recall
curves obtained by hyperSMURF with default parameters (red curve) and with the selected “best” pa-
rameters (cyan curve).

ranging from the coverage of the training data, to the accuracy and diversity of the base learner, to the
balancing between the classes, and to the number of new synthetic instances added via SMOTE [1]. In
other words it is not always straightforward the proper choice of the learning parameters of hyperSMURF,
since it also strongly depends on the underlying distribution of the data. In principle, by properly tuning
the learning parameters, we can better fit the data and significantly boost the overall performances. Con-
sidering the complexity of a “a priori” evaluating of the “optimal” hyperSMURF parameters, we adopted
an unbiased empirical approach by selecting through internal cross-validation on the training data the
parameters that lead to the beast estimated performance using the Area Under the Precision Recall
Curve (AUPRC) as the the metric to be maximized. In principle other metrics could be maximized, but
we used the AUPRC, since the data are highly imbalanced.

Results

We subdivided the Mendelian data that include 406 manually annotated “positive” deleterious SNV
and more than 14 millions of neutral “negative” SNVs in a training set including about 9/10 of the available
data and a separated test set including the remaining 1/10 of data, using the same set of genomic
features described in [8]. We then compared the hyperSMURF results obtained by using the default
parameters (i.e. n = 100, f = 2, m = 3) with the hyperSMURF results obtained by selecting the
“best” learning parameters through cross-validation on the training data. More precisely we considered
all combinations of the parameters n ∈ {10, 50, 100, 300}, f ∈ {1, 2, 3, 5, 10} and m ∈ {1, 2, 3, 5, 10}.
The resulting 100 hyperSMURF models have been cross-validated on the training set using the Marconi
cluster available at CINECA Supercomputing Applications and Innovation Department. It is worth noting
that we did not tune the random forest learning parameters, using always for each forest 10 trees and
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randomly selecting for each node of the trees 5 features, in order to reduce the complexity of the overall
parameter search space.

Fig 1 a) shows the distribution of the cross-validated results across 100 combinations of (n, f,m)
triplets of the learning parameters on the training set. The results widely vary, depending on the choice
of the parameters, from a minimum of the Area Under the Precision Recall Curve (AUPRC) equal to
0.1741 to a maximum AUPRC equal to 0.4529, achieved with parameters n = 300, f = 1,m = 10, i.e. with
300 random forests trained on samples having a doubled number of positive examples (f = 1), and a
number of negatives 10 times larger than that of positives (m = 10), thus reducing in the training set the
original imbalance between positive and negatives from about 1 : 36000 to 1 : 10.

Fig 1 b) shows the precision/recall curves obtained on the test set by using the default param-
eters and the best parameters selected by cross-validation on the training data. Here we obtain a
significant increment of the AUPRC from 0.3568 to 0.4156 (the difference is statistically significant ac-
cording to the Wilcoxon rank sum test, p − value = 10−16). These results are also confirmed by the
AUROC50, AUROC100, and AUROC1000 results, where hyperSMURF with tuned parameters largely
and significantly outperforms hyperSMURF with default parameters (Table 1). Note that we do not re-
port AUROC results, since in this highly imbalanced context pure AUROC results are not as significant
as AUPRC or AUROC limited to the top ranked SNVs [6].

Table 1: Comparison of hyperSMURF results obtained respectively with default parameters (n =
100, f = 2,m = 3) and with the best parameters obtained by internal cross-validation on the training
data (n = 300, f = 1,m = 10).

AUPRC AUROC50 AUROC100 AUROC500 AUROC1000

hyperSMURF default par. 0.3568 0.8600 0.9300 0.9091 0.8868
hyperSMURF best par. 0.4156 0.9220 0.9610 0.9407 0.9460

We outline that we previously showed that hyperSMURF with default parameters just significantly out-
performs existing state-of-the-art methods [3, 9, 2] on the prediction of deleterious variants in Mendelian
diseases [7]. Our results summarized in Table 1 show that the proper selection of hyperSMURF learning
parameters can further significantly improve the overall performance of the method.

Conclusions

This work shows the potentialities of hyperSMURF parameters tuning in the context of the detection and
prioritization of deleterious genetic variants associated with Mendelian diseases, but we guess that also
in other genomic contexts characterized by high imbalance between deleterious and neutral variants fine
tuning of hyperSMURF parameters may lead to improved results.

Nevertheless the training and testing of hyper-ensembles trained and tested on millions of genetic
variants is highly time-consuming: in the context of Mendelian disease, where we used low-dimensional
features (more precisely 26 genomic features) training and testing a hyperSMURF model required from
about 2 to 20 hours of computation with an Intel Xeon Processor E5 − 2697v4, with a clock of 2.30 GHz
and 128 GB of memory. By enlarging the number of features to thousands (e.g. by using features ex-
tracted from DNA with deep convolutional networks [9]), the computational time can further dramatically
increase. To overcome these drawbacks, a full parallel implementation of hyperSMURF by exploiting High
Performance Computing architectures is a research line to be pursued to deeply explore the learning pa-
rameters of hyperSMURF, as well as the learning parameters of the random forests that constitute the
base learners of the hyper-ensemble. On the other hand a parallel implementation could make feasible
the automatic adaptation of hyperSMURF to different learning tasks and different analyses of genomic
big data, ranging from the detection of deleterious variants in genetic diseases to the detection of somatic
driver mutations in cancer.
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