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MOTIVATION

The imbalance between the small set of available disease-
associated variants and the large set of benign genomic variants is
intrinsic to genetic variant data, especially in non-coding
regulatory regions of the human genome [1].

In this context machine learning (ML) for variant relevance
prediction is like a chicken and egg problem – they cannot be
easily found without ML, but ML cannot be applied effectively
until a sufficient number of instances has been found.
Unfortunately, most common ML-based methods [2,3,4] do not
adopt specific imbalance-aware learning techniques to deal with
imbalanced data, resulting in a poor performance with reduced
sensitivity and precision [5].

HYPERSMURF

We designed the ML method hyper SMOTE Undersampling with
Random Forests (hyperSMURF) for extremely imbalanced
datasets. HyperSMURF adopts over- and undersampling
techniques [6,7] to increase the count of the minority class and
reduce the cardinality of the majority class. The resulting training
sets are relatively small and balanced, thus avoiding a bias of
learning algorithms towards the majority class and reducing
runtime.

Data partitioning: The training set is partitioned into n partitions
using all minority class instances (magenta) in every partition and
an equal split of the majority class instances (blue).

Over- and Undersampling: In every partition the minority
instances are oversampled using the synthetic minority over-
sampling technique (SMOTE) [6] and the majority instances are
subsampled to an appropriate size. This results in balanced
datasets per partition and a comprehensive coverage of the input
data.

RF learning: For each partition a random forest (RF) is trained.

Hyper-ensemble combination: A new variant will be classified by
an average vote of the resulting n RFs.
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CONCLUSION

These results strongly suggest that imbalance-aware learning
strategies, like hyperSMURF, are essential for relevance
prediction of disease associated non-coding variants in the
human genome and we recommend their use to deal with
imbalanced genomic data. HyperSMURF is implemented and
freely available in R and Java. For more information see
https://hypersmurf.readthedocs.io and Schubach et al [9].

Outline of hyperSMURF
The hyperSMURF precision-recall curve (green) lies significantly
above the other methods (Wilcoxon rank sum test, p-value < 10-9)
showing that our imbalance-aware procedure outperforms
competing learning strategies on the same data set in prioritizing
pathogenic variants at any given level of sensitivity.
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