
A Comparative Evaluation of Meta-Learning Strategies

over Large and Distributed Data Sets ∗

Andreas L. Prodromidis†and Salvatore J. Stolfo

Columbia University, Computer Science Dept., New York, NY 10027, USA

Abstract

There has been considerable interest recently in various approaches
to scaling up machine learning systems to large and distributed data
sets. We have been studying approaches based upon the parallel ap-
plication of multiple learning programs at distributed sites, followed
by a meta-learning stage to combine the multiple models in a princi-
pled fashion. In this paper, we empirically determine the “best” data
partitioning scheme for a selected data set to compose “appropriately-
sized” subsets and we evaluate and compare three different strategies,
Voting, Stacking and Stacking with Correspondence Analysis (SCANN)
for combining classification models trained over these subsets. We seek
to find ways to efficiently scale up to large data sets while maintaining
or improving predictive performance measured by the error rate, a cost
model, and the TP-FP spread.

Keywords: classification, multiple models, meta-learning, stacking, vot-
ing, correspondence analysis, data partitioning

Email address of contact author: andreas@cs.columbia.edu

Phone number of contact author: ++ 1 212 939 7078

Electronic version: gzipped PostScript emailed to icml99@ijs.si

∗This research is supported by the Intrusion Detection Program (BAA9603) from
DARPA (F30602-96-1-0311), NSF (IRI-96-32225 and CDA-96-25374) and NYSSTF (423115-
445).
†Supported in part by an IBM fellowship

1

1 Introduction

Inductive learning and classification techniques have been applied in many
problems in diverse areas with very good success. Although the field of ma-
chine learning has made substantial progress over the past few years, both
empirically and theoretically, one of the lasting challenges is the development
of inductive learning techniques that effectively scale up to large and possibly
physically distributed data sets. Most of the current generation of learning
algorithms are computationally complex and require all data to be resident
in main memory which is clearly untenable for many realistic problems and
databases.

One means to address this problem is to apply various inductive learn-
ing programs over the distributed subsets of data in parallel and integrate
the resulting classification models or classifiers in some principled fashion to
boost overall predictive accuracy [8, 20]. This approach has two advantages,
first it uses serial code (standard off-the-shelf learning programs) at multiple
sites without the time-consuming process of writing parallel programs and sec-
ond, the learning processes can use small subsets of data that can fit in main
memory (a data reduction technique).

The objective of this work is to examine and evaluate various approaches
for combining all or a subset of the classification models learned separately over
the formed data subsets. Specifically, we describe three combining (or meta-
learning) methods Voting, Stacking (also known as Class Combiner Meta-
Learning) and SCANN (a combination of Stacking and Correspondence Analy-
sis) and compare their predictive performance and scalability through experi-
ments performed on actual credit card data provided by two different financial
institutions. The learning task, here, is to train predictive models that detect
fraudulent transactions.

On the other hand, partitioning the data in small subsets, may have a neg-
ative impact on the performance of the final classification model. An empirical
study by Chan and Stolfo [6] that compares the robustness of meta-learning
and voting as the number of data partitions increases while the size of the sep-
arate training sets decreases, shows training set size to be a significant factor
in the overall predictive performance of the combining method. That study
cautions that data partitioning as a means to improve scalability, can have a
negative impact on the overall accuracy, especially if the sizes of the training
sets are too small. Part of this work is to empirically determine guidelines

2

for the “best” scheme for partitioning the selected data set into subsets that
are neither too large for the available system resources nor too small to yield
inferior classification models. Through an exhaustive experiment over several
well known combining strategies, applied to a large real world data set, we
find no specific and definitive strategy works best in all cases. Thus, for the
time being, it appears scalable machine learning by meta-learning, remains
an experimental art. (Wolpert’s [28] remark that stacking is a “black art” is
probably correct). The good news is, however, we demonstrate that a properly
engineered meta-learning system does scale and does consistently outperform
a single learning algorithm.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the three combining methods we study and Section 3 introduces
the credit card fraud detection problem and evaluation criteria. In Section 4
we describe our experiments for partitioning the data sets and in Section 5
we detail the experiments and compare the performance of the three combin-
ing approaches when integrating the available classifiers. Finally, Section 6
summarizes our results and concludes the paper.

2 Model Combining Techniques

The three methods examined aim to improve efficiency and scalability by exe-
cuting a number of learning processes on a number of data subsets in parallel
and then combining the collective results. Initially, each learning task, also
called a base learner, computes a base classifier, i.e. a model of its under-
lying data subset or training set. Next, a separate task, integrates these in-
dependently computed base classifiers into a higher level classification model.
Before we detail the three combining strategies, we introduce the following
notation. Let Ci, i = 1, 2, ..., K, denote a base classifier computed over sample
Tj, j = 1, 2, ..., D, of training data T , and M the number of possible classes.
Let x be an instance whose classification we seek, and C1(x), C2(x),..., CK(x),
Ci(x) ∈ {y1, y2, ..., yM}, be the predicted classifications of x from the K base
classifiers, Ci, i = 1, 2, ..., K. Finally, let V be a separate validation set of size
n that is used to generate meta-level predictions of the K base classifiers.

Voting Voting denotes the simplest method of combining predictions from
multiple classifiers. In its simplest form, called plurality or majority voting,
each classification model contributes a single vote (its own classification). The

3

collective prediction is decided by the majority of the votes, i.e. the class with
the most votes is the final prediction. In weighted voting, on the other hand,
the classifiers have varying degrees of influence on the collective predictions
that is relative to their predictive accuracy. Each model is associated with a
specific weight determined by its performance (e.g accuracy, cost model) on a
validation set. The final prediction is decided by summing over all weighted
votes and by choosing the class with the highest aggregate. For a binary
classification problem, for example, where each classifier Ci with weight wi
casts a 0 vote for class y1 and a 1 vote for class y2, the aggregate is given by:

S(x) =

∑K
i=1 wiCi(x)
∑K
i=1 wi

(1)

If we choose 0.5 to be the threshold distinguishing classes y1 and y2, the
weighted voting method classifies unlabeled instances x as y1 if S(x) < 0.5, as
y2 if S(x) > 0.5 and randomly if S(x) = 0.5.

This approach can be extended to non-binary classification problems by
mapping the m-class problem into m binary classification problems and by
associating each class j with a separate Sj(x), j ∈ 1, 2, ...m. To classify an
instance x, each Sj(x) generates a confidence value indicating the prospect of
x being classified as j versus being classified as non-j. The final class selected
corresponds to the Sj(x), j ∈ 1, 2, ...m with highest confidence value.

In this study, the weights wi’s are set according to the performance (with
respect to a selected evaluation metric) of each classifier Ci on a separate vali-
dation set. Other weighted majority algorithms, such as WM and its variants,
described in [13], determine the weights by assigning, initially, the same value
to all classifiers and by decreasing the weights of the wrong classifiers when
the collective prediction is false.

Stacking The main difference between voting and Stacking [28] or Class-
Combiner Meta-learning [5] is that the latter combines base classifiers in a
non-linear fashion. The combining task, called a meta learner, integrates the
independently computed base classifiers into a higher level classifier, called
a meta classifier, by learning over a meta-level training set. This meta-level
training set is composed by using the base classifiers’ predictions on the val-
idation set as attribute values, and the true class as the target. From these
predictions, the meta-learner learns the characteristics and performance of the
base classifiers and computes a meta-classifier which is a model of the “global”

4

data set. To classify an unlabeled instance, the base classifiers present their
own predictions to the meta-classifier which then makes the final classification.

Other meta-learning approaches include the Arbiter strategy and two varia-
tions of the Combiner strategy, the Class-Attribute-Combiner and the Binary-
Class-Combiner [5]. The former employs an “objective” judge whose own
prediction is selected if the participating classifiers cannot reach a consensus
decision. Thus, the arbiter is itself a classifier, derived by a learning algorithm
that learns to arbitrate among predictions generated by different base clas-
sifiers. The latter two combiner strategies differ from class-combiner in that
they adopt different policies to compose their meta-level training sets.

SCANN The third approach we consider is Merz’s SCANN [14] (Stacking,
Correspondence Analysis and Nearest Neighbor) algorithm for combining mul-
tiple models as a means to improve classification performance. As with stack-
ing, the combining task integrates the independently computed base classifiers
in a non-linear fashion. The meta-level training set is composed by using
the base classifiers’ predictions on the validation set as attribute values, and
the true class as the target. In this case, however, the predictions and the
correct class are de-multiplexed and represented in a 0/1 form.1 SCANN em-
ploys correspondence analysis [11] (similar to Principal Component Analysis)
to geometrically explore the relationship between the validation examples, the
models’ predictions and the true class. In doing so, it maps the true class la-
bels and the predictions of the classifiers onto a new scaled space that clusters
similar prediction behaviors. Then, the nearest neighbor learning algorithm is
applied over this new space to meta-learn the transformed predictions of the
individual classifiers. To classify unlabeled instances, SCANN maps them onto
the new space and assigns them the class label corresponding to the closest
class point.

SCANN is a sophisticated combining method that seeks to geometrically
uncover the position of the classifiers relative to the true class labels. On the
other hand, it relies on singular value decomposition techniques to compute
the new scaled space and capture these relationships, which can be expensive,
both in space and time, as the number of examples and hence as the number

1The meta-level training set is a matrix of n rows (records) and [(K+1)·M] columns (0/1
attributes), i.e. there are M columns assigned to each of the K classifiers and M columns
for the correct class. If classifier Ci(x) = j, then the jth column of Ci will be assigned a 1
and the rest (M − 1) columns a 0.

5

of the base classifiers increases (the overall time complexity of SCANN is
(O((M ·K)3)).

3 Experimental Setting

The quality of a classifier depends on several factors, including the learning
algorithm, the learning task itself and the quality and quantity of the training
set provided. The first three factors are discussed in this section while the
latter (quantity) will be the topic of the next section.

In this study we employed five different inductive learning programs, Bayes,
C4.5, ID3, CART and Ripper. Bayes, implements a naive Bayesian learning
algorithm described in [15], ID3 [21], its successor C4.5 [22], and CART [2] are
decision tree based algorithms, and Ripper [9] is a rule induction algorithm.

We obtained two large databases from Chase and First Union banks, mem-
bers of FSTC (Financial Services Technology Consortium) each with 500,000
records of sampled credit card transaction data spanning one year (October
1995 - September 1996). The schemas of the databases were developed over
years of experience and continuous analysis by bank personnel to capture im-
portant information for fraud detection. The records have a fixed length of
137 bytes each and about 30 numeric and categorical attributes including the
binary class label (fraud/legitimate transaction). We cannot reveal the details
of the schema beyond what is described in [16]. Chase bank data consisted
of 20% fraud and 80% legitimate transactions, whereas First Union data con-
sisted of 15% versus 85% of fraud/legitimate distribution.

The learning task is to compute classifiers that correctly discern fraudulent
from legitimate transactions. To evaluate and compare the performance of the
computed models and the combining strategies we adopted three metrics: the
overall accuracy, the TP-FP spread (TP: True Positive, FP: False Positive),
and a cost model fit to the credit card detection problem. Overall accuracy
expresses the ability to give correct predictions, (TP - FP)2 denotes the ability
to catch fraudulent transactions while minimizing false alarms, and finally, the
cost model captures the performance of a classifier with respect to the goal of
the target application (stop loss due to fraud).

2The (TP-FP) spread is an ad-hoc, yet informative and simple metric characterizing the
performance of the classifiers. In comparing the classifiers, one can replace the (TP-FP)
spread, which defines a certain family of curves in the ROC plot, with a different metric or
with a complete analysis [18, 19] in the ROC space.

6

Credit card companies have a fixed overhead that serves as a threshold
value for challenging the legitimacy of a credit card transaction. If the trans-
action amount amt, is below this threshold, they choose to authorize the trans-
action automatically. Each transaction predicted as fraudulent requires an
“overhead” referral fee for authorization personnel to decide the final disposi-
tion. This “overhead” cost is typically a “fixed fee” that we call Y . Therefore,
even if we could accurately predict and identify all fraudulent transactions,
those whose amt is less than Y would produce $(Y − amt) in losses anyway.
To calculate the savings each classifier contributes due to stopping fraudulent
transactions, we use the following cost model for each transaction:

• If prediction of the transaction is “legitimate” or (amt ≤ Y), authorize
the transaction (savings = 0);

• Otherwise investigate the transaction:

– If transaction is “fraudulent”, savings = amt− Y ;

– otherwise savings = −Y ;

4 Data Partitioning

The size of the training set constitutes a significant factor in the overall perfor-
mance of the trained classifier. In general, the quality of the computed model
improves as the size of the training set increases. At the same time, however,
the size of the training set is limited by main memory constraints and the time
complexity of the learning algorithm. To determine a good data partitioning
scheme for the credit card data sets we applied the five learning algorithms
over training sets of varying size. The objective was to compute base classifiers
with good performance in a “reasonable” amount of time.

Specifically, we constructed training sets of varying size, starting from 100
examples to 200,000 examples for both credit card data sets. The accuracy,
the TP-FP spread and the savings reported in Figure 1, are the averages of
each base classifier after a 10-fold cross-validation experiment. The top row
corresponds to classifiers trained over the Chase data set and the bottom row to
the First Union data set. Training sets larger than 250,000 examples were too
large to fit in the main memory of a 300 MHz PC with 128MB capacity running
Solaris 2.6. Moreover, the training of base classifiers from 200,000 examples

7

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0 50000 100000 150000 200000

A
c
c
u

ra
c
y

Size of training file

Average accuracy of Chase classifiers

Bayes
C4.5

CART
ID3

Ripper
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 50000 100000 150000 200000

T
P

-F
P

Size of training file

Average TP-FP spread of Chase classifiers

Bayes
C4.5

CART
ID3

Ripper

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 50000 100000 150000 200000

S
a

b
in

g
s

Size of training file

Average savings of Chase classifiers

Bayes
C4.5

CART
ID3

Ripper

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0 50000 100000 150000 200000

A
c
c
u

ra
c
y

Size of training file

Average accuracy of First Union classifiers

Bayes
C4.5

CART
ID3

Ripper

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 50000 100000 150000 200000

T
P

-F
P

Size of training file

Average TP-FP spread of First Union classifiers

Bayes
C4.5

CART
ID3

Ripper

300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

800000

850000

0 50000 100000 150000 200000

S
a

v
in

g
s

Size of training file

Average savings of First Union classifiers

Bayes
C4.5

CART
ID3

Ripper

Figure 1: Accuracy (left), TP-FP (center) and savings (right) of the Chase (top row) and
the First Union (bottom row) classifiers as a function of the size of the training set.

required several CPU hours anyway, which prevented us from experimenting
with larger sets.

According to these figures, different learning algorithm perform best for
different evaluation metrics and for different training set sizes. Some notable
examples include the ID3 algorithm that computes good decision trees over
the First Union data and bad decision trees over the Chase data, and Naive
Bayes that generates classifiers that are very effective according to the TP-FP
spread and the cost model over the Chase data, but does not perform as well
with respect to overall accuracy. The Ripper algorithm ranks among the best
performers.

The graphs show that larger training sets result in better classification
models, thus verifying Catlett’s results [3, 4] pertaining to the negative im-
pact of sampling on the accuracy of learning algorithms. On the other hand,

8

they also show that performance curves converge, thus indicating reduced ben-
efits as more data are used for learning. Increasing the amount of training data
beyond a certain point may not necessarily provide performance improvements
that are significant enough to justify the use of additional system resources
to learn over larger data sets. In a related study, Oates and Jensen [24] find
that increasing the amount of training data to build classification models of-
ten results in a linear increase in the size of the model with no significant
improvement in their accuracy.

The empirical evidence suggests that there is a tradeoff between the effi-
cient training and the effective training of classifiers. Based on these curves
for this data and learning task, the turning point lies between 40,000 and
50,000 examples (i.e. above this point, predictive performance improves very
slowly). We decided to partition the credit card data in 12 sets of 42,000
records each, a scheme which (roughly) corresponds to partitioning transac-
tion data by month.

5 Evaluation of Meta-Learning Strategies

Computing Base Classifiers The first step involves the training of the
base classifiers. We distribute each data set across six different data sites
(each site storing two subsets) and apply the 5 learning algorithms on each
subset of data, therefore creating 60 classifiers (10 classifiers per data site).
Next, each data site imports all “remote” base classifiers (50 in total) to test
them against its “local” data. In essence, each classifier is evaluated on 5
different (and unseen) subsets.

Figure 2 presents the averaged results for the Chase (top row) and First
Union (bottom row) credit card data, respectively. The left plots show the
accuracy, the center plots depict the TP-FP spread and the right plots display
the savings of each base classifier according to the cost model. The x-axis
represents the base classifiers, and each vertical bar corresponds to a single
model (60 in total). The first set of 12 bars denotes Bayesian classifiers, the
second set of 12 bars denotes C4.5 classifiers etc. Each bar in an adjacent
group of 12 bars corresponds to a specific subset used to train the classifiers.
For example, the first bar of the left plot of the top row of Figure 2 represents
the accuracy (83.5%) of the Bayesian classifier that was trained on the first
data subset, the second bar represents the accuracy (82.7%) of the Bayesian
classifier that was trained on the second data subset and the 13th bar of the

9

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0 10 20 30 40 50 60

A
c
c
u

ra
c
y

Base Classifiers

Average accuracy of Chase base classifiers

Bayes
C45

CART
ID3

Ripper

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 10 20 30 40 50 60

T
P

-F
P

Base Classifiers

Average TP - FP spread of Chase base classifiers

Bayes
C45

CART
ID3

Ripper

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 10 20 30 40 50 60

S
a

v
in

g
s

Base Classifiers

Average savings of Chase base classifiers

Bayes
C45

CART
ID3

Ripper

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0 10 20 30 40 50 60

A
c
c
u

ra
c
y

Base Classifiers

Average accuracy of First Union base classifiers

Bayes
C45

CART
ID3

Ripper

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Dec May Oct Mar Aug Jan Jun Nov Apr Sep Feb Jul Dec

T
P

-F
P

Base Classifiers

Average TP - FP spread of First Union base classifiers

Bayes
C45

CART
ID3

Ripper

400000

450000

500000

550000

600000

650000

700000

750000

800000

850000

Dec May Oct Mar Aug Jan Jun Nov Apr Sep Feb Jul Dec

S
a

v
in

g
s

Base Classifiers

Average savings of First Union base classifiers

Bayes
C45

CART
ID3

Ripper

Figure 2: Fraud Predictors: Accuracy (left), TP-FP spread (middle) and Savings (right)

on Chase (top row) and First Union data (bottom row).

same plot (the first of the second group of 12 adjacent bars) represents the
accuracy 86.8% of the C4.5 classifier that was trained on the first subset. The
maximum achievable savings for the perfect classifier, with respect to our cost
model, is $1,470K for the Chase and $1,085K for the First Union data sets.
According to the figures, some learning algorithms are more suitable under
one problem for one evaluation metric (e.g naive Bayes on Chase data is more
effective in savings) than for another metric (e.g. accuracy of naive Bayes
classifier on Chase data) or another problem (e.g. naive Bayes on First Union
data), even though the two training sets are similar in nature.

Overall, it appears that all learning algorithms performed better on the
First Union data set than on the Chase data set. On the other hand, note
that there are fewer fraudulent transactions in the First Union data and this
causes a higher baseline accuracy. In all cases, classifiers are successful in

10

Table 1: Performance of the meta-classifiers
Chase First Union

Algorithm Accuracy TP-FP Savings Accuracy TP-FP Savings

Majority 89.58% 0.556 $ 596K 96.16% 0.753 $ 798K
Weighted 89.59% 0.560 $ 664K 96.19% 0.737 $ 823K
Bayes 88.65% 0.621 $ 818K 96.21% 0.831 $ 944K
C4.5 89.30% 0.567 $ 588K 96.25% 0.791 $ 878K
CART 88.67% 0.552 $ 594K 96.24% 0.798 $ 871K
ID3 87.19% 0.532 $ 561K 95.72% 0.790 $ 858K
Ripper 89.66% 0.585 $ 640K 96.53% 0.817 $ 899K
SCANN 89.75% 0.581 $ 632K 96.53% 0.817 $ 899K

detecting fraudulent transactions.
Next, we combine these separately learned classifiers under the three dif-

ferent strategies hoping to generate meta-classifiers with improved fraud de-
tection capabilities.

Combining Base Classifiers Although the sites are populated with 60
classification models, in meta-learning they combine only the 50 “imported”
base classifiers. Since each site uses its local data to meta-learn (the first subset
as the validation set and the second subset as the test set) it avoids using the 10
“local” base classifiers to ensure that no classifiers predict on their own training
data. We applied 8 different meta-learning methods at each site: the 2 voting
strategies (majority and weighted), 5 stacking strategies corresponding to the
5 learning algorithms each used as a meta-learner, and SCANN. Since all sites
meta-learn the base classifiers independently, the setting of this experiment
corresponds to a 6-fold cross validation with each fold executed in parallel.

The performance results of these meta-classifiers averaged over the 6 sites
are reported in Table 1. As with the base classifiers, none of the meta-learning
strategies outperform the rest in all cases. It is possible, however, to identify
SCANN and Ripper as the most accurate meta-classifiers and Bayes as the
best performer according to the TP-FP spread and the cost model. (The best
result in every category is depicted in bold.)

An unexpected outcome of these experiments is the inferior performance
of the weighted voting strategy with respect to the TP-FP spread and the
cost model. Stacking and SCANN are at a disadvantage since their combining
method is ill-defined. Training classifiers to distinguish fraudulent transac-
tions is not a direct approach to maximizing savings (or the TP-FP spread).

11

Traditional learning algorithms are unaware of the adopted cost model and
the actual value (in dollars) of the fraud/legitimate label; instead they are
designed to reduce misclassification error. Hence, the most accurate classifiers
are not necessarily the most cost effective. This can be demonstrated in Fig-
ure 2 (top row). Although the Bayesian base classifiers are less accurate than
the Ripper and C4.5 base classifiers, they are by far the best under the cost
model. Similarly, the meta-classifiers in stacking and SCANN are trained to
maximize the overall accuracy not by examining the savings in dollars but by
relying on the predictions of the base-classifiers. In fact, the right plot of the
top row of Figure 2 reveals that with only a few exceptions, Chase base classi-
fiers are inclined towards catching “cheap” fraudulent transactions and for this
they exhibit low savings scores. Naturally, the meta-classifiers are trained to
trust the wrong base-classifiers for the wrong reasons, i.e. they trust the base
classifiers that are most accurate instead of the classifiers that accrue highest
savings.

Although weighted voting combines classifiers that too are unaware of the
cost model, its meta-learning stage is independent of learning algorithms and
hence it is not ill-defined. Instead, it assigns a different degree of influence
to each base classifier according to its performance (accuracy, TP-FP spread,
savings). Hence, the collective prediction is generated by trusting the best
classifiers as determined by the chosen evaluation metric over the validation
set.

One way to deal with such ill-defined problems is to use cost-sensitive al-
gorithms, i.e. algorithms that employ cost models to guide the learning strat-
egy [25]. On the other hand, this approach has the disadvantage of requiring
significant change to generic algorithms. An alternative, but (probably) less
effective technique is to alter the class distribution in the training set [2, 7]
or to tune the learning problem according to the adopted cost model. In the
credit card fraud domain, for example, we can transform the binary classi-
fication problem into a multi-class problem by multiplexing the binary class
with the continuous amt attribute (properly quantized into several “bins”). A
third option, complementary to the other two, is to have the meta-classifier
pruned [17], i.e. discard the base classifiers that do not exhibit the desired
property.

To improve the performance of our meta-classifiers, we followed the latter
approach. Although it addresses the cost-model problem at a late stage, af-
ter base classifiers are generated, is has the advantage of treating classifiers

12

Table 2: Performance of the best pruned meta-classifiers
Chase First Union

Algorithm Accur. K TP-FP K Savings K Accur. K TP-FP K Savings K

Bayes 89.33% 16 0.632 32 $ 903K 5 96.57% 13 0.848 12 $ 950K 29
C4.5 89.58% 14 0.572 27 $ 793K 5 96.51% 16 0.799 25 $ 880K 42
CART 89.49% 9 0.571 18 $ 798K 5 96.48% 12 0.801 29 $ 884K 37
ID3 89.40% 8 0.568 1 $ 792K 5 96.45% 8 0.795 30 $ 872K 40
Ripper 89.70% 46 0.595 47 $ 858K 3 96.59% 30 0.821 36 $ 902K 44
SCANN 89.76% 46 0.574 32 $ 880K 5 96.45% 49 0.794 12 $ 902K 12
Majority 89.60% 47 0.577 11 $ 902K 3 96.55% 15 0.780 15 $ 854K 13
Weighted 89.60% 48 0.577 11 $ 905K 4 96.59% 12 0.789 12 $ 862K 10

as black boxes. Furthermore, it can prove invaluable to the computationally
and memory expensive SCANN algorithm. To meta-learn 50 classifiers over a
42,000 large validation set, for example, SCANN exhausted the available re-
sources of the 300MHz PC with 128MB main memory and 465MB swap space.
By discarding classifiers prior to meta-learning, pruning helps reduce the size
of the SCANN meta-learning matrix and naturally simplifies the problem.

Pruning Meta-Classifiers Determining the optimal set of classifiers for
meta-learning is a combinatorial problem. With 50 base classifiers per data
site, there are 250 combinations of base classifiers that can be selected. To
search the space of the potentially most promising meta-classifiers, the pruning
algorithms [17] employ evaluation functions that are based on the evaluation
metric adopted (e.g. accuracy, cost model) and heuristic methods that are
based on the performance and properties of the available set of base classifiers
(e.g. diversity or high accuracy for a specific class).

Table 2 displays the performance results of the best pruned meta-classifiers
and their size K (number of constituent base classifiers). Again, there is no
single best meta-classifier (best results depicted in bold); depending on the
evaluation criteria and the learning task, different meta-classifiers of different
sizes perform better. By selecting the base classifiers, pruning helps address the
cost-model problem as well as the TP-FP spread problem. The performance
of a meta-classifier is directly related to the properties and characteristics of
its constituent base classifiers. Recall (from the right plot of the top row of
Figure 2) that very few base classifiers from Chase have the ability to catch
“expensive” fraudulent transactions. By combining all these classifiers, the
meta-classifiers exhibit substantially improved performance (see the savings
column of the Chase data in Table 2). This characteristic is not as apparent
for the First Union data set since the majority of the First Union base classifiers

13

happened to catch the “expensive” fraudulent transactions anyway (right plot
of the bottom row of Figure 2). The same, but to a lesser degree, holds for
the TP-FP spread.

6 Concluding Remarks

Integrating multiple learned classification models (classifiers) computed over
large and (physically) distributed data sets has been proposed as an effective
approach to scaling inductive learning techniques. In this paper we compared
the predictive performance and scalability of three commonly-used model-
combining strategies, Voting, Stacking and SCANN (Stacking with Correspon-
dence Analysis) through experiments performed on two databases of actual
credit card data, where the learning task is fraud detection.

We evaluated the meta-learning methods from two perspectives, their pre-
dictive performance (i.e. accuracy, TP-FP spread, savings) and their scala-
bility. For the former, the experiments on the credit card transaction data
revealed that there in no single meta-learning algorithm that is best over all
cases, although SCANN, stacking with Naive Bayes and stacking with Ripper
had an edge. For the latter, the voting methods scale better, while stacking
methods depend on the scalability of the meta-learning algorithms (the par-
ticular algorithm used for combining models). At the opposite end, SCANN
is main memory expensive and has a time complexity of O(M ·K)3 (M: num-
ber of classes, K: number of base classifiers), making it much less scalable.
However, in all cases, the combined meta-classifiers outperformed the base
classifiers trained on the largest possible sample of the data.

The manner in which the original data set is partitioned into subsets, con-
stitutes a significant parameter to the success of the model-combining (or
meta-learning) method. To acquire effective base classifiers efficiently, the size
of each subset has to be large enough for the learner to converge to a good
model and small enough to allow training under reasonable time and space
constraints. There has been extensive analytical research within the Compu-
tational Learning Theory(COLT) [1, 12] on bounding the sample complexity
using the PAC model [26], the VC dimension [27], Information theory [10] and
statistical physics [23]. In this paper, we studied the problem from an exper-
imental perspective in order to determine whether any consistent pattern is
discernable, that then may be compared to possible theoretical predictions.
Unfortunately, the reported compendium of results demonstrates that there

14

are no specific guideposts indicating the best partitioning strategy and sig-
nificant experimentation is required to find the best partitioning scheme and
meta-learning strategy, under different performance metrics, that scales well.
This experiment highlights the need for new research into this important prac-
tical issue.

7 Acknowledgments

We are in debt to Chris Merz for providing us with his implementation of the
SCANN algorithm.

References

[1] M. Anthony and N. Biggs. Computational learning theory: An Introduction. Cambridge
University Press, Cambridge, England, 1992.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres-
sion Trees. Wadsworth, Belmont, CA, 1984.

[3] J. Catlett. Megainduction: A test flight. In Proc. Eighth Intl. Work. Machine Learning,
pages 596–599, 1991.

[4] J. Catlett. Megainduction: machine learning on very large databases. PhD thesis,
Dept. of Computer Sci., Univ. of Sydney, Sydney, Australia, 1992.

[5] P. Chan and S. Stolfo. Meta-learning for multistrategy and parallel learning. In Proc.
Second Intl. Work. Multistrategy Learning, pages 150–165, 1993.

[6] P. Chan and S. Stolfo. A comparative evaluation of voting and meta-learning on
partitioned data. In Proc. Twelfth Intl. Conf. Machine Learning, pages 90–98, 1995.

[7] P. Chan and S. Stolfo. Toward scalable learning with non-uniform class and cost
distributions: A case study in credit card fraud detection. In Proc. Fourth Intl. Conf.
Knowledge Discovery and Data Mining, pages 164–168, 1998.

[8] P. Chan, S. Stolfo, and D. Wolpert, editors. Working Notes for the AAAI-96 Workshop
on Integrating Multiple Learned Models for Improving and Scaling Machine Learning
Algorithms, Portland, OR, 1996. AAAI.

[9] W. Cohen. Fast effective rule induction. In Proc. 12th Intl. Conf. Machine Learning,
pages 115–123, 1995.

[10] M. Kearns D. Haussler and R. E. Shapire. Bounds on the sample complexity of bayesian
learning using information theory and the vc dimension. Machine Learning, 14:83–113,
1994.

[11] Michael J. Greenacre. Theory and Application of Correspondence Analysis. Academic
Press, London, 1984.

15

[12] M. J. Kearns and U.V. Vazirani. An Introduction to computational learning theory.
MIT Press, Cambridge, MA, 1994.

[13] N. Littlestone and M. Warmuth. The weighted majority algorithm. Technical Report
UCSC-CRL-89-16, Computer Research Lab., Univ. of California, Santa Cruz, CA,
1989.

[14] C. Merz. Using correspondence analysis to combine classifiers. Machine Learning, 1998.
to appear.

[15] M. Minksy and S. Papert. Perceptrons: An Introduction to Computation Geometry.
MIT Press, Cambridge, MA, 1969. (Expanded edition, 1988).

[16] A. L. Prodromidis and S. J. Stolfo. Agent-based distributed learning applied to fraud
detection. In Sixteenth National Conference on Artificial Intelligence. Submitted for
publication.

[17] A. L. Prodromidis and S. J. Stolfo. Pruning meta-classifiers in a distributed data mining
system. In In Proc of the First National Conference on New Information Technologies,
pages 151–160, Athens, Greece, October 1998.

[18] F. Provost and T. Fawcett. Analysis and visualization of classifier performance: Com-
parison under imprecise class and cost distributions. In Proc. Third Intl. Conf. Knowl-
edge Discovery and Data Mining, pages 43–48, 1997.

[19] F. Provost and T. Fawcett. Robust classification systems for imprecise environments.
In Proc. AAAI-98. AAAI Press, 1998.

[20] F. Provost and V. Kolluri. Scaling up inductive algorithms: An overview. In Proc.
Third Intl. Conf. Knowledge Discovery and Data Mining, pages 239–242, 1997.

[21] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[22] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, San Mateo,
CA, 1993.

[23] H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from
examples. Physical Review, A45:6056–6091, 1992.

[24] D. Jensen T. Oates. Large datasets lead to overly complex models: As explanation and
a solution. In G. Piatetsky-Shapiro R. Agrawal, P. Stolorz, editor, Proc. Fourth Intl.
Conf. Knowledge Discovery and Data Mining, pages 294–298. AAAI Press, 1998.

[25] P. D. Turney. Cost-sensitive classification: Empirical evaluation of a hydrid genetic
decision tree induction algorithm. Journal of AI Research, 2:369–409, 1995.

[26] L. Valiant. A theory of the learnable. Comm. ACM, 27:1134–1142, 1984.

[27] V. N. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies
of events to their posibilities. Theory of Probability and Its Applications, 16:264–280,
1971.

[28] D. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

16

