
Cost Complexity Pruning of Ensemble Classifiers ∗

Andreas L. Prodromidis
†

Computer Science Department
Columbia University
New York, NY 10027

andreas@cs.columbia.edu

Salvatore J. Stolfo
Computer Science Department

Columbia University
New York, NY 10027

sal@cs.columbia.edu

ABSTRACT
In this paper we study methods that combine multiple clas-
sification models learned over separate data sets in a dis-
tributed database setting. Numerous studies posit that such
approaches provide the means to efficiently scale learning to
large datasets, while also boosting the accuracy of individ-
ual classifiers. These gains, however, come at the expense of
an increased demand for run-time system resources. The fi-
nal ensemble meta-classifier may consist of a large collection
of base classifiers that require increased memory resources
while also slowing down classification throughput. Here, we
present a technique for measuring the tradeoff between pre-
dictive performance and available run time system resources
and we describe an algorithm for pruning (i.e. discarding a
subset of the available base classifiers) the ensemble meta-
classifier as a means to reduce its size while preserving its
accuracy. The algorithm is independent of the method used
initially when computing the meta-classifier. It is based
on decision tree pruning methods and relies on the map-
ping of an arbitrary ensemble meta-classifier to a decision
tree model. Through an extensive empirical study on meta-
classifiers computed over two real data sets, we illustrate
our pruning algorithm to be a robust approach to discarding
classification models without degrading the overall predic-
tive performance of an ensemble computed over those that
remain after pruning.

1. INTRODUCTION
Recently, there has been considerable interest in meta-

learning techniques that combine or integrate an ensemble
of models computed by the same or different learning al-
gorithms over multiple data subsets [7, 10]. An advantage

∗This research is supported by the Intrusion Detection Pro-
gram (BAA9603) from DARPA (F30602-96-1-0311), NSF
(IRI-96-32225 and CDA-96-25374) and NYSSTF (423115-
445).
†Supported in part by an IBM fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD 2000 Workshop on Distributed and Parallel Knowledge Discovery
2000 Boston, MA USA
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

of such an approach is that it can improve both efficiency
and scalability by executing the machine learning processes
in parallel and on (possible disjoint) subsets of the data
(a data reduction technique). Moreover, it can produce a
“higher quality” final classification model, also called meta-
classifier, by combining classifiers with different inductive
bias [26].

The JAM system (Java Agents for Meta-learning) [38], for
example, is a distributed agent-based data mining system
that integrates multiple models. JAM takes full advantage
of the inherent parallelism and distributed nature of meta-
learning by providing a set of learning agents that compute
models (classifier agents) over data stored locally at a site.
JAM supports the remote dispatch and exchange of learning
and classifier agents among the participating data base sites
through a special distribution mechanism. It also provides
a set of meta-learning agents that combine the computed
models that were learned (perhaps) at different sites.

Several methods for integrating ensembles of models have
been studied, including techniques that combine the set of
models in some linear fashion [1, 2, 3, 12, 20, 27, 29, 37, 39,
21], techniques that employ referee functions to arbitrate
among the predictions generated by the classifiers, [16, 17,
18, 19, 28, 36], methods that rely on principal components
analysis [23, 24] or methods that apply inductive learning
techniques to learn the behavior and properties of the can-
didate classifiers [6, 40].

Constructing ensembles of classifiers is not cheap and pro-
duces a final outcome that is expensive due to the increased
complexity of the final meta-classifier. In general, meta-
classifiers combine all their constituent base-classifiers. Hence,
to classify unlabeled instances, predictions need to be gen-
erated from all base-classifiers before the meta-classifier can
produce its final classification. This results in significant
decrease in classification throughput (the speed with which
an unknown datum can be classified) and increased demand
for system resources (including memory to store base clas-
sifiers).

From experiments conducted on a Personal Computer with
a 200MHz Pentium processor running Solaris 2.5.1 where
base- and meta-classifiers were trained to detect credit card
fraud, we measured a decrease of 50%, 70% and 80% credit
card transaction processing throughput for meta-classifiers
composed of 13, 20 and 30 base-classifiers, respectively. Meta-
classifier throughput is crucial in real-time systems, such as
e-commerce or intrusion detection systems. Memory con-
straints are equally important. For the same problem, a sin-
gle ID3 decision tree ([33]) may require more than 850KBytes

of main memory, while a C4.5 decision tree ([34]) may need
100KBytes. Given the phenomenal growth in the number
and size of the databases and data warehouses, retaining
and deploying an increasing number of base classifiers and
meta-classifiers may not be practical nor feasible.

In this paper we describe a technique for studying the
tradeoff between predictive performance and available re-
sources and we consider pruning techniques that aim to re-
duce the complexity and cost of ensemble meta-classifiers.
We introduce a post-training pruning algorithm for discard-
ing the base classifiers that are redundant or less “relevant”
to the meta-classifier. Post-training pruning is applied to a
pre-existing meta-classifier.1 The objective of pruning, here,
is to build a smaller and faster meta-classifier that achieves
comparable performance (accuracy) to the unpruned meta-
classifier.

Our post-training pruning algorithm is based on the prun-
ing methods employed by decision-tree learning algorithms.
In principle, it can be applied to any meta-classifier, regard-
less of the method used to integrate the base classifiers. In
this study, we test it on meta-classifiers computed by the
Naive Bayesian[25] and the Ripper[8] learning algorithms
(stacking), on meta-classifers combined by the majority vot-
ing and weighted voting schemes and on meta-classifiers in-
tegrated by the SCANN [23] algorithm. The remainder of
this paper is organized as follows. In Section 2 we pro-
vide a brief overview of these classifier-combining techniques
and in Section 3 we introduce the post-training pruning
algorithm. The effectiveness of this algorithm is empiri-
cally evaluated on classifiers and meta-classifiers computed
over two credit card transaction data data sets. Section 4
details these experiments and illustrates the decision-tree-
based post-training pruning method to be highly robust in
reducing the size of the meta-classifiers while maintaining
predictive performance. Finally, in Section 5 we conclude
the paper.

2. BACKGROUND
We consider three methods for combining the predictions

of multiple base classifiers, voting, stacking and SCANN
(based on Correspondence Analysis). Before we overview
the three combining strategies, we introduce the following
notation. Let Ci, i = 1, 2, ..., K, denote a base classifier
computed over data subsets Dj , j = 1, 2, ..., L, of training
data D, and M the number of possible classes. Let x be an
instance whose classification we seek, and C1(x), C2(x),...,
CK(x), Ci(x) ∈ {y1, y2, ..., yM}, be the predicted classifi-
cations of x from the K base classifiers. Finally, let V be
a separate validation set of size n that is used to generate
meta-level predictions of the K base classifiers.

2.1 Voting
Voting denotes the simplest method of combining predic-

tions from multiple classifiers. In its simplest form, called
plurality or majority voting, each classification model Ci,
i = 1, 2, ..., K contributes a single vote (its own classifica-
tion). The collective prediction is decided by the majority
of the votes, i.e. the class yj , j ∈ {y1, y2, ..., yM} with the
most votes is the final prediction. In weighted voting, on the

1Conversely, pre-training pruning [30] refers to the filtering
of base classifiers before they are included in an ensemble
meta-classifier.

other hand, the classifiers have varying degrees of influence
on the collective predictions that is relative to their pre-
dictive accuracy. Each model is associated with a specific
weight determined by its performance (e.g accuracy, cost
model) on a validation set. The final prediction is decided
by summing over all weighted votes and by choosing the
class with the highest aggregate. For a binary classification
problem, for example, where each classifier Ci with weight
wi casts a 0 vote for class y1 and a 1 vote for class y2, the
aggregate is given by:

S(x) =

� K
i=1 wiCi(x)

� K
i=1 wi

(1)

If we choose 0.5 to be the threshold distinguishing classes
y1 and y2, the weighted voting method classifies unlabeled
instances x as y1 if S(x) < 0.5, as y2 if S(x) > 0.5 and
randomly if S(x) = 0.5.

This approach can be extended to non-binary classifica-
tion problems by mapping the m-class problem into m bi-
nary classification problems and by associating each class
j with a separate Sj(x), j ∈ 1, 2, ...m. To classify an in-
stance x, each Sj(x) generates a confidence value indicating
the prospect of x being classified as j versus being classified
as non-j. The final class selected corresponds to the Sj(x),
j ∈ 1, 2, ...m with highest confidence value.

In this study, the weights wi’s are set according to the
performance (with respect to a selected evaluation metric,
e.g accuracy) of each classifier Ci on a separate validation
set.

2.2 Stacking
The main difference between voting and Stacking [40] (or

Class-Combiner Meta-learning [5]) is that the latter com-
bines base classifiers in a non-linear fashion. The combin-
ing task, called a meta learner, integrates the independently
computed base classifiers into a higher level meta-classifier,
by learning over a meta-level training set. This meta-level
training set is composed by using the base classifiers’ predic-
tions C1(x), C2(x),..., CK(x), Ci(x) on the validation set V
as attribute values, and the true class as the target. From
these predictions, the meta-learner learns the characteristics
and performance of the base classifiers Ci, i = 1, 2, ..., K and
computes a meta-classifier which is a model of the “global”
data set. To classify an unlabeled instance x, the base clas-
sifiers present their own predictions to the meta-classifier
which then makes the final classification.

2.3 SCANN
The third approach we consider is Merz’s SCANN [23]

(Stacking, Correspondence Analysis and Nearest Neighbor)
algorithm for combining multiple models as a means to im-
prove classification performance. As with stacking, the com-
bining task integrates the independently computed base clas-
sifiers in a non-linear fashion. The meta-level training set
is composed by using the base classifiers’ predictions on
the validation set as attribute values, and the true class
as the target. In this case, however, the predictions and
the correct class are de-multiplexed and represented in a
0/1 form.2 SCANN employs correspondence analysis [14]

2The meta-level training set is a matrix of n rows (records)
and [(K+ 1) ·M] columns (0/1 attributes), i.e. there are M
columns assigned to each of the K classifiers and M columns

(similar to Principal Component Analysis) to geometrically
explore the relationship between the validation examples,
the models’ predictions and the true class. In doing so, it
maps the true class labels and the predictions of the classi-
fiers onto a new scaled space that clusters similar prediction
behaviors. Then, the nearest neighbor learning algorithm is
applied over this new space to meta-learn the transformed
predictions of the individual classifiers. To classify unlabeled
instances, SCANN maps them onto the new space and as-
signs them the class label corresponding to the closest class
point.

SCANN is a sophisticated combining method that seeks
to geometrically uncover the position of the classifiers rela-
tive to the true class labels. On the other hand, it relies on
singular value decomposition techniques to compute the new
scaled space and capture these relationships, which can be
expensive, both in space and time, as the number of exam-
ples and hence as the number of the base classifiers increases
(the overall time complexity of SCANN is (O((M ·K)3)).

3. POST-TRAINING PRUNING
Post-training pruning refers to the pruning of a meta-

classifier after it is constructed. In contrast with pre-training
pruning [30] which uses greedy forward-search methods to
choose classifiers, post-training pruning is considered a back-
wards selection method. It starts with all available K clas-
sifiers (or with the classifiers pre-training pruning selected)
and iteratively removes one at a time. The objective is to
perform a search on the (possibly reduced) space of meta-
classifiers and prune the meta-classifier without degrading
predictive performance.

The deployment and effectiveness of post-training prun-
ing methods depends highly upon the availability of unseen
labeled (validation) data. Post-training pruning can be fa-
cilitated if there is an abundance of data, since a separate
labeled subset can be used to estimate the effects of discard-
ing specific base classifiers and thus guide the backwards
elimination process. A hill climbing pruning algorithm, for
example, would employ the separate validation data to eval-
uate and select the best (out of K possible) meta-classifier
with K−1 base classifiers, then evaluate and select the best
meta-classifier with K − 2 (out of K − 1 possible) and so
on. In the event that additional data is not available, stan-
dard cross validation techniques can be used, instead, to
estimate the performance of the pruned meta-classifier, at
the expense of increased complexity.

A disadvantage of such a method, besides the need for a
separate data set, and its vulnerability to the horizon effect,
is the overhead of constructing and evaluating all the in-
termediate meta-classifiers (O(K2) in the example), which,
depending on the combining methods (e.g the learning algo-
rithm in stacking) and the data set size, can be prohibitive.

To our knowledge, Margineantu and Dietterich’s “Pruning
Adaptive Boosting” [22], constitutes the only other (besides
our prior work on pre-training pruning methods) related re-
search on this subject. In that paper, the authors study
the problem of pruning the ensemble of classifiers obtained
by the boosting algorithm ADABOOST [13]. Their research
however, was restricted to computing all classifiers by apply-

for the correct class. If classifier Ci(x) = j, then the jth

column of Ci will be assigned a 1 and the rest (M − 1)
columns a 0.

ing the same learning algorithm on many different subsets
of the same training set. Furthermore, their most effec-
tive pruning algorithm, “Reduce-Error Pruning with Back-
fitting” suffers from the same disadvantage of computing
intermediate meta-classifiers as our hill climbing method.

Next, we describe an efficient post-training pruning al-
gorithm that does not require intermediate meta-classifiers
or separate validation data. Instead it extracts information
from the ensemble meta-classifier and employs the meta-
classifier training set seeking to minimize (meta-level) train-
ing error. Furthermore, we consider the more general setting
where the final classifications may be obtained be any meta-
learning technique, not just voting (ADABOOST), and en-
sembles of classifiers may be generated by applying, pos-
sibly, different learning algorithms over (possibly) distinct
databases,

3.1 Cost complexity pruning
The algorithm is based on the minimal cost complexity

pruning method of the CART decision tree learning algo-
rithm [4]. CART computes a large decision tree T0 to fit the
training data, by allowing the splitting process to continue
until all terminal nodes are either small, or pure (i.e. all in-
stances belong to the same class) or contain only instances
with identical attribute-value vectors. Next, it applies the
cost complexity pruning method to compute a set of consec-
utive nested subtrees Ti, i ∈ {1, 2, ..., R} of decreasing size
from the original large tree T0 by progressively pruning up-
wards to its root node (TR corresponds to the subtree that
consists of the root node only).

To compute the set of these nested subtrees Ti, i ∈ {1, 2, ..., R},
the cost complexity pruning method associates a complexity
measure C(T) with the number of terminal nodes of deci-
sion tree T . The method prunes decision trees by seeking to
minimize a cost complexity metric Rα(T) that combines two
factors, the size (complexity) and the accuracy (or equiv-
alently the error rate) of the tree. Specifically, Rα(T) is
defined as

Rα(T) = R(T) + α · C(T) (2)

where R(T) denotes the misclassification cost (error rate3) of
the decision tree T and α represents a complexity parameter
(α ≥ 0).

The degree of pruning of the initial tree T0 can be con-
trolled by adjusting the complexity parameter α, which, ac-
cording to Equation 2 corresponds to the weight of the com-
plexity factor C(T). If α is small, the penalty for having
a large number of terminal nodes is small; as the penalty
α per terminal node increases, the pruning algorithm re-
moves an increasing number of terminal nodes in an at-
tempt to compensate and thus generates the nested subtrees
Ti, i ∈ {1, 2, ..., R}. The minimal cost complexity pruning
method guarantees to find the “best” (according to the mis-
classification cost) pruned decision tree Tr, r ∈ {1, 2, ..., R},
of the original tree T0 of a specific size (as dictated by
the complexity parameter). An alternative pruning method
using Rissanen’s minimum description length is described
in [35].

3Estimated over a separate pruning subset of the training
set or using cross validation methods.

Figure 1: The six steps of the Post-Training Pruning Algorithm

3.2 Pruning meta-classifiers
The post-training pruning algorithm employs the mini-

mal cost complexity method as a means to reduce the size
(number of base-classifiers) of the meta-classifiers. In cases
where the meta-classifier is built via a decision tree learning
algorithm, the use of the cost complexity pruning method
is straight forward. The decision tree model constitutes the
ensemble meta-classifier and each node corresponds to a sin-
gle base-classifier. Thus, by determining which nodes to re-
move, the pruning algorithm discovers and discards the base
classifiers that are least important.

To apply this method on meta-classifiers of arbitrary rep-
resentation The post-training pruning algorithm employs
the minimal cost complexity method as a means to reduce
the size (number of base-classifiers) of the meta-classifiers.
In cases where the meta-classifier is built via a decision tree
learning algorithm, the use of the cost complexity prun-
ing method is straight forward. The decision tree model
constitutes the ensemble meta-classifier and each node cor-
responds to a single base-classifier. Thus, by determining
which nodes to remove, the pruning algorithm discovers and
discards the base classifiers that are least important.

(i.e. non decision-tree), the post-training pruning algo-
rithm maps the meta-classifier to its “decision-tree equiv-
alent”. In general, the algorithm can be considered as a
three-phase process. Phase one seeks to model the arbitrary
meta-classifier as an equivalent decision tree meta-classifier
that imitates its behavior (a similar approach appeared in [9]
in the context of neural networks). Phase two removes as
many base-classifiers as needed using the minimal cost com-
plexity pruning method on the derived decision tree model,
and phase three re-combines the remaining base classifiers
using the original meta-learning algorithm. Hereinafter, the
term “decision tree model” will refer to the decision tree

trained to imitate the behavior of the initial arbitrary meta-
classifier.

These three phases are graphically illustrated in six steps
in Figure 1. For completeness, a detailed description of the
post-training pruning algorithm is provided in Table 1.

1. The meta-classifier is applied to its own (meta-learning)
training set. (Recall that the attributes of the meta-
level training set correspond to the predictions of the
base classifiers on the validation set and the true class
labels correspond to the correct classes of the valida-
tion set.)

2. A new training set, called decision tree training set, is
composed by using the meta-level training set (without
the true class labels) as attributes, and the predictions
of the meta-classifier on the meta-level training set as
the true class target.

3. A decision-tree-based algorithm, such as CART, com-
putes the “decision-tree equivalent” of the original meta-
classifier by learning its input/output behavior recorded
in the decision-tree training set. The resultant decision-
tree meta-classifier is trained to imitate the behavior
of the original meta-classifier and discover the manner
in which it combines its constituent base classifiers.
Furthermore, this decision tree reveals the base clas-
sifiers that do not participate in the splitting criteria
and hence are irrelevant to the meta-classifier. Those
base classifiers that are deemed irrelevant are pruned
in order to meet the performance objective.

4. The next stage aims to further reduce the number
of selected base classifiers, if necessary, according to
the restrictions imposed by the available system re-
sources and/or the runtime constraints. The post-
training pruning algorithm applies the minimal cost

Input: Set of base classifiers C = {C1, C2, ..., CK}, validation set V = {x1,x2, ..., xn}, meta learning
algorithm AML, meta classifier MC, decision tree algorithm ADT, throughput requirement
(classifications/sec) T, convergence parameter δ(δ > 0), stopping criteria ε(0 < ε < δ)

Output: Pruned meta classifier MC∗

Begin
MLT = {< ~a1,~a2, ...,~aK ,~tc >}, ~ai[j] = Ci(xj)∀i,~tc[j] = TrueClass(xj), j=1, 2, ...,n, xj ∈ V;
DT T = {< ~a1,~a2, ...~aK , ~pc >}, predicted class ~pc[j] = MC(xj);
DTM = ADT(DDT), the decision tree model trained with α = 0;
K∗ = K; DTM∗ = DTM; /* initialization of running variables */
T ∗ = 1/t, t = max{ti|ti = time(MC(xi)), i = 1, 2, ...,n }; /* Throughput estimate of MC */
While (T ∗ < T) do

δ∗ = δ; K∗ = K∗ − 1; /* remove one classifiers at a time */
L1: While DTM∗ has more than K∗ classifiers do

α = α + δ∗; /* increase α to remove classifiers */
DTM∗ = argmin

i
{[Rα(DTMi) + α · C(DTMi)]|DTMi = subtree of DTM};

end while
if (DTM∗ has too many classifiers pruned (i.e. less than K∗) and δ∗ > ε)

reset α = α − δ∗; adjust δ∗ = δ∗/2; DTM∗ = DTM; goto L1;

C = C − Ĉ, Ĉ = the classifier that is not included in DTM∗;
MLT ∗ = {< ~aj1 ,~aj2 , ...,~ajK∗ ,~tc >}, Cj1 , Cj2 , ..., CjK∗ ∈ C (retained classifiers);
MC∗ = AML(MLT ∗);
T ∗ = 1/t, t = max{ti|ti = time(MC∗(xi)), i = 1, 2, ...,n };

end while
MLT ∗ = {< ~aj1 ,~aj2 , ...,~ajK∗ ,~tc >}, Cj1 , Cj2 , ..., CjK∗ ∈ C;
MC∗ = AML(MLT ∗);

End

Table 1: Post-Training Pruning Algorithm

complexity pruning method to reduce the size of the
decision tree and thus prune away additional base clas-
sifiers. The degree of pruning can be controlled by the
complexity parameter α, as described in Section 3.1.
(The loop in the figure corresponds to the search for
the proper value of the α parameter). Since minimal
cost complexity pruning eliminates first the branches
of the tree with the least contribution to the decision
tree’s performance, the base classifiers pruned during
this phase will also be the least “important” base clas-
sifiers.

5. A new meta-level training set is composed by using
the predictions of the remaining base classifiers on the
original validation set as attributes and the true class
labels as target.

6. Finally, the original meta-learning algorithm is trained
over this new meta-level training set to re-compute the
pruned ensemble meta-classifier.

3.2.1 Remarks
The algorithm is guaranteed to terminate due to the fi-

nite structure of the decision tree and the bounded num-
ber of times (dlog2(δ/ε)e) the inner loop will be executed.
Moreover, Theorem 3.10 of [4] proves the monotonic rela-
tion between the decreasing size of the decision tree as the
complexity parameter α increases.

The success of the post-training pruning algorithm de-
pends on the degree the decision tree learning algorithm
“overfits” the original meta-classifier. We choose to train
the model the meta-classifier on the very same data that
was used to compute it in the first place. In some sense
this is equivalent to generating test suits of test sets to ex-
ercise all program execution paths. By modeling the orig-

inal meta-classifier based on its responses to its own train-
ing set we ensure that the decision tree learning algorithm
has access to the most inclusive information regarding the
meta-classifier’s behavior. Furthermore, we do not require
a separate pruning data set.

This post-training pruning method is algorithm and rep-
resentation independent, i.e. it does not examine the inter-
nal structure and strategies of the learning algorithms that
generate the base classifiers, nor the assumptions and char-
acteristics of the underlying data or their schema definitions.
Instead, it treats the base classifiers as black boxes and re-
lies on an independent training set that composes based on
the responses of each base classifier.

Another benefit of the post-training pruning algorithm
comes from the modeling of the original meta-classifier by
a decision tree classifier. In general, an ensemble meta-
classifier may have an internal representation that we cannot
easily view or parse (except, of course, for its constituent
base classifiers). By inducing a “decision tree equivalent”
model, the algorithm generates an alternative and more
declarative representation that we can inspect. Other re-
lated methods for describing and computing comprehensi-
ble models of ensemble meta-classifiers have been studied
in the contexts of Knowledge Acquisition [11], Knowledge
Probing [15] and meta-classifier correlation-based visualiza-
tion tools [32].

Computing decision tree models as part of the post-training
pruning algorithm are not only useful for pruning or for ex-
plaining the behavior of the meta-classifier. These interme-
diate models are also meta-classifiers and hence can too be
used to classify unlabeled instances. Recall, that they are
also trained over the predictions of the available base clas-
sifiers, albeit for a different target class. As a result, their
predictive accuracy may be inferior to that of the original

meta-classifier. On the other hand, in a distributed data
mining system, such as JAM, where classifiers and meta-
classifiers can be exchanged and used as black boxes, it may
not be possible to prune the imported meta-classifiers to
adhere to local constraints (e.g if the original meta-learning
algorithm is not known or not accessible). In this case, it
may be preferable to trade some of their predictive accuracy
for the more efficient pruned decision tree meta-classifiers.

The next section describes a comprehensive set of exper-
iments that evaluates our post-training pruning algorithm
and attempts to shed light on these issues. Specifically, we
address the following questions:

• How accurately can a decision tree-based algorithm
learn the behavior of a meta-classifier of arbitrary rep-
resentation?

• What is the penalty of using the decision-tree meta-
classifiers instead of the original meta-classifiers?

• How robust is post-training pruning? What is the
tradeoff between the predictive accuracy and the clas-
sification throughput of the meta-classifier as we in-
crease the degree of pruning?

4. EMPIRICAL EVALUATION
We evaluated the post-training pruning algorithm on meta-

classifiers trained to predict credit card transactions as le-
gitimate or fraudulent. (Results of the pre-training pruning
methods on the same task are reported in [30]. We obtained
two large databases from Chase and First Union banks,
members of FSTC (Financial Services Technology Consor-
tium) each with 500,000 records (69 MBytes of data) of sam-
pled credit card transaction data spanning one year. The
schemas of the databases were developed over years of ex-
perience and continuous analysis by bank personnel to cap-
ture important information for fraud detection. The records
have a fixed length of 137 bytes each and about 30 numeric
and categorical attributes including the binary class label
(fraud/legitimate transaction). Chase bank data consisted
of 20% fraud and 80% legitimate transactions, whereas First
Union data consisted of 15% versus 85% of fraud/legitimate
distribution.

To compute the set of base classifiers we employed five dif-
ferent inductive learning programs, Bayes, C4.5, ID3, CART
and Ripper. Bayes, implements a naive Bayesian learning
algorithm described in [25], ID3 [33], its successor C4.5 [34],
and CART [4] are decision tree based algorithms, and Rip-
per [8] is a rule induction algorithm.

We evaluated the various classification models from two
perspectives, their predictive performance and their efficiency.
To measure and compare predictive performance we used
several different metrics including accuracy, TP-FP spread
(TP and FP stand for True Positive, and False Positive re-
spectively), and a cost model fit to the credit card fraud
detection problem. Overall accuracy expresses the ability
to give correct predictions, TP-FP denotes the ability to
catch fraudulent transactions while minimizing false alarms
and the cost model captures the performance of a classifica-
tion model with respect to the goal of the target application
(stop loss due to fraud). To compare the efficiencies of the
various ensemble meta-classifiers we measured classification
throughput. Throughput here denotes the rate at which a

stream of data items can be piped through and labeled by
a meta-classifier.

Due to space constraints, however, we limit this report to
(mostly) accuracy and throughput results. The emphasis in
this paper is not on presenting an effective fraud detection
method, but rather on the evaluation of the post-training
pruning algorithm as a general method for reducing the size
of an ensemble meta-classifier. Detailed information on ef-
fective fraud detectors with extensive results (TP-FP spread
and cost model) from the mining of these credit card data
sets can be found in [31].

4.1 Computing Base Classifiers
The first step involves the training of the base classifiers.

We split each data set in 12 subsets and distribute them
across six different data sites (each site storing two subsets).
Then we apply the 5 learning algorithms on each subset
of data, therefore creating 60 classifiers (10 classifiers per
data site). Next, each data site imports all “remote” base
classifiers (50 in total) to test them against its “local” data.
In essence, each classifier is evaluated on 5 different (and
unseen) subsets.

Figure 2 presents the averaged accuracy results for the
Chase (left plot) and First Union (right plot) credit card
data, respectively. The x-axis represents the base classifiers,
and each vertical bar corresponds to a single model (60 in
total). The first set of 12 bars denotes Bayesian classifiers,
the second set of 12 bars denotes C4.5 classifiers etc. Each
bar in an adjacent group of 12 bars corresponds to a specific
subset used to train the classifiers. For example, the first
bar of the left plot represents the accuracy (83.5%) of the
Bayesian classifier that is trained on the first data subset, the
second bar represents the accuracy (82.7%) of the Bayesian
classifier that is trained on the second data subset and the
13th bar of the same plot (the first of the second group of
12 adjacent bars) represents the accuracy 86.8% of the C4.5
classifier that is trained on the first subset.

With the exception of two ID3 base classifiers on the
Chase data set, all base classifiers demonstrate significantly
better results comparing to the trivial mean predictor (80%
for the Chase and 85% for the First Union data). More-
over, by combining these separately learned classifiers, it is
possible to generate new models with improved fraud detec-
tion capabilities. Overall, it appears that all learning algo-
rithms performed better on the First Union data set than
on the Chase data set. On the other hand, note that there
are fewer fraudulent transactions in the First Union data
and this causes a higher baseline accuracy. Next, we com-
bine these separately learned classifiers under the voting,
stacking and SCANN strategies hoping to generate meta-
classifiers with improved fraud detection accuracies.

4.2 Combining Base Classifiers
Although the sites are populated with 60 classification

models, in meta-learning they combine only the 50 “im-
ported” base classifiers. Since each site uses its local data
to meta-learn (the first subset as the validation set and the
second subset as the test set) it avoids using the 10 “local”
base classifiers to ensure that no classifiers predict on their
own training data. We applied 5 different meta-learning
methods at each site: the 2 voting strategies (majority and
weighted), the 2 stacking strategies corresponding to the
Bayes and Ripper learning algorithms and the SCANN al-

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0 10 20 30 40 50 60

A
c
c
u

ra
c
y

Base Classifiers

Average accuracy of Chase base classifiers

Bayes
C45

CART
ID3

Ripper

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0 10 20 30 40 50 60

A
c
c
u

ra
c
y

Base Classifiers

Average accuracy of First Union base classifiers

Bayes
C45

CART
ID3

Ripper

Figure 2: Accuracy of base classifiers on Chase(left) and First Union (right) data.

Table 2: Performance of the meta-classifiers

Bank data Majority Voting Weighted Voting Bayes Stacking Ripper Stacking SCANN

Chase 89.58% 89.59% 88.65% 89.66% 89.74%

First Union 96.16% 96.19% 96.21% 96.53% 96.44%

gorithm. Since all sites meta-learn the base classifiers inde-
pendently, the setting of this experiment corresponds to a
6-fold cross validation with each fold executed in parallel.

The performance results of these meta-classifiers averaged
over the 6 sites are reported in Table 2. A comparison to
Figure 2 indicates that meta-classifiers outperform all base
classifiers, and in most cases by a significant margin. Due
to the size of the data sets, the empirical results exhibit
a very low variance. In general, a 0.1% accuracy differ-
ence between two methods is a statistically significant result
with 99% confidence according to the 2-tailed paired t test.
On the other hand, the meta-classifiers are composed of 50
base classifiers suggesting a significant increase in resource
requirements (e.g memory, CPU time) and substantial re-
duction in classification throughput. Post-training pruning
seeks to address this issue. The objective is to remove a
subset of the constituent base classifiers while preserving
the accuracy gains.

4.3 Post-training pruning experiments
The first two phases of the post-training pruning seek to

learn and prune a decision tree model of the original meta-
classifier. Initially, we applied the CART learning algorithm
on the decision tree training set of each meta-classifier. The
initial decision-tree models were generated with the com-
plexity parameter α set to zero to allow the growth of trees
that are as accurate and as “close” to the original meta-
classifiers as possible. Then, by increasing the α parameter
(i.e. the degree of pruning), we gradually computed trees
with fewer nodes (thus pruning base classifiers). One can
quantify the effectiveness of the derived models by compar-
ing their predictions against the predictions of their corre-
sponding meta-classifiers on the separate test sets.

The accuracy of the decision tree models and the impact
of pruning on their performance is shown in Figure 3. Each
plot (left for Chase, right for First Union) displays the aver-
age accuracy (y-axis) of the decision tree algorithm in imi-
tating the behavior of the 5 different methods for construct-
ing ensembles. The x-axis represents decision-tree models
of progressively smaller sizes. The initial (unpruned) model
corresponds to the left-most points of each curve (i.e. de-
gree of pruning is 0%). Naturally, an accuracy result of
100% would signify a decision tree model that has perfectly
learned to imitate its meta-classifier. According to this fig-
ure, learning the behavior of these meta-classifiers has been
fairly successful, with decision tree models achieving a 98%-
99% accuracy rate, even when pruning is as heavy as 80%.

The last phase of the post-training pruning algorithm
aims to re-combine the remaining base classifiers (those in-
cluded in the decision tree model) using the original meta-
learning algorithm. To evaluate the effectiveness of the
pruning algorithm, we measured the accuracy of all the in-
termediate meta-classifiers obtained as we increased the de-
gree of pruning from 0% (original unpruned meta-classifier)
to 100% (all base classifiers are pruned, default prediction
is the most frequent class, i.e. legitimate transaction).

In Figure 4 we present the accuracy results for the Chase
(left side plots) and the First Union (right side plots) meta-
classifiers. The plots at top row correspond to the stack-
ing meta-learning methods (Bayes, Ripper), the plots at the
center row represent the voting (majority, weighted) meta-
learning methods and the plots at the bottom row belong to
the SCANN meta-learning method. These graphs demon-
strate that post-training pruning was quite successful in all
cases examined. The algorithm determined and pruned the

0.95

0.96

0.97

0.98

0.99

1

10 20 30 40 50 60 70 80 90 100

T
o

ta
l
A

c
c
u

ra
c
y

degree of pruning

Total Accuracy of the decision tree model

Majority Voting
Weighted Voting
Bayes Stacking

Ripper Stacking
SCANN

0.95

0.96

0.97

0.98

0.99

1

10 20 30 40 50 60 70 80 90 100

T
o

ta
l
A

c
c
u

ra
c
y

degree of pruning

Total Accuracy of the decision tree model

Majority Voting
Weighted Voting
Bayes Stacking
Ripper Stacking

SCANN

Figure 3: Accuracy of decision tree models in emulating the behavior of Chase (left) and First Union (right)

meta-classifiers

redundant and/or the less “contributing” base classifiers,
and generated substantially smaller meta-classifiers without
significant performance penalties.

The graphs also depict the overall accuracy of the deci-
sion tree models of the meta-classifiers. Recall, that these
are models trained to “imitate” the behavior of an ensemble,
not to directly detect fraudulent transactions. As expected,
their predictive performance is inferior to that of their cor-
responding (pruned) meta-classifier. On the other hand, it
is interesting to note that it is possible to compute decision
tree models that outperform other original meta-classifiers.
In these experiments, for example, the decision tree model
of Ripper (and those of the voting meta-classifiers) outper-
forms the original Bayesian meta-classifier.

To further explore the last observation, we also measured
the accuracy of the original stacking CART meta-classifier
as a function of the degree of pruning. In other words, we
studied the direct performance of a decision tree learning
algorithm as a method of combining base classifiers. The
results are depicted by the curve denoted as “CART stack-
ing”. Surprisingly, CART appears to be more effective when
learning to combine base classifiers indirectly (e.g. by ob-
serving the ripper meta-classifier) than through direct learn-
ing of this target concept. This suggests that searching
the hypothesis space as modeled by a previously computed
meta-classifier may, in some cases, be easier than searching
the original hypothesis space. It is not entirely clear why
this may be so, and is a subject of further study. As a re-
sult, in cases where meta-classifiers are considered as black
boxes, or meta-learning algorithms are not available, it may
be beneficial to compute, prune and use their “decision tree
equivalents” instead.

4.4 Predictive performance vs. throughput
The degree of pruning of a meta-classifier within a data

site is dictated by the classification throughput requirements
of the particular problem. In general, higher throughput
requirements necessitate heavier pruning. The last set of
experiments investigates the trade-off between throughput

and predictive performance.
To normalize the different evaluation metrics and bet-

ter quantify the effects of pruning, we measured the ra-
tio of the performance improvement of the pruned meta-
classifier over the performance improvement of the com-
plete (original) meta-classifiers. In other words, we mea-

sured the performance gain ratio G = PPRUNED−PBASE
PCOMPLETE−PBASE ,

where PPRUNED, PCOMPLETE and PBASE denote the per-
formance (e.g. accuracy, TP-FP spread, cost savings) of
the pruned meta-classifier, the complete meta-classifier and
the best base classifier, respectively. Values of G ' 1 in-
dicate pruned meta-classifiers that sustain the performance
levels to that of the complete meta-classifier while values of
G < 1 indicate performance losses. When only the best base
classifier is used, there is no performance improvement and
G = 0.

Figure 5 demonstrates the algorithm’s effectiveness on the
Chase (left) and First Union (right) classifiers by displaying
the predictive performance and throughput of the pruned
Ripper stacking meta-classifiers as a function of the degree
of pruning. In this figure, we have also included the per-
formance results of the meta-classifier with respect to two
more evaluation metrics, the TP-FP spread, and the savings
due to timely fraud detection. Similar results have been ob-
tained for the other meta-classifiers, but are not shown here
due to space considerations. The black colored bars rep-
resent the accuracy gain ratios, the dark gray colored bars
represent the TP-FP gain ratios and the light gray bars rep-
resent the savings gain ratios of the pruned meta-classifier.
The very light gray bars correspond to the relative through-
put of the pruned meta-classifier TP to the throughput of
the complete meta-classifier TC . To estimate the through-
put of the meta-classifiers, we measured the time needed
for a meta-classifier to generate a prediction. This time in-
cludes the time required to obtain the predictions of the
constituents base classifiers sequentially on an unseen credit
card transaction, the time required to assemble these pre-
dictions into a single meta-level “prediction” vector and the
time required for the meta-classifier to input the vector and

0.875

0.88

0.885

0.89

0.895

0.9

10 20 30 40 50 60 70 80 90 100

T
o
ta

l
A

c
c
u
ra

c
y

degree of pruning (%)

Accuracy of Chase Stacking meta-classifiers

Bayes stacking
Ripper stacking
CART stacking

Decision tree for Ripper
Decision tree for Bayes

0.945

0.95

0.955

0.96

0.965

0.97

10 20 30 40 50 60 70 80 90 100

T
o
ta

l
A

c
c
u
ra

c
y

degree of pruning (%)

Accuracy of First Union Stacking meta-classifiers

Bayes stacking
Ripper stacking
CART stacking

Decision tree for Ripper
Decision tree for Bayes

0.875

0.88

0.885

0.89

0.895

0.9

10 20 30 40 50 60 70 80 90 100

T
o
ta

l
A

c
c
u
ra

c
y

degree of pruning (%)

Accuracy of Chase Voting meta-classifiers

Majority voting
Weighted voting

Decision tree for Majority voting
Decision tree for Weighted voting

0.945

0.95

0.955

0.96

0.965

0.97

10 20 30 40 50 60 70 80 90 100

T
o
ta

l
A

c
c
u
ra

c
y

degree of pruning (%)

Accuracy of First Union Voting meta-classifiers

Majority voting
Weighted voting

Decision Tree for Majority voting
Decision tree for Weighted voting

0.875

0.88

0.885

0.89

0.895

0.9

10 20 30 40 50 60 70 80 90 100

T
o
ta

l
A

c
c
u
ra

c
y

degree of pruning (%)

Accuracy of Chase SCANN meta-classifiers

SCANN
Decision tree for SCANN

0.945

0.95

0.955

0.96

0.965

0.97

10 20 30 40 50 60 70 80 90 100

T
o
ta

l
A

c
c
u
ra

c
y

degree of pruning (%)

Accuracy of First Union SCANN meta-classifiers

SCANN
Decision tree for SCANN

Figure 4: Accuracy of the Stacking (top plots), Voting (middle plots) and SCANN (bottom plots) meta-

classifiers and their decision tree models for Chase (left) and First Union (right) data

generate the final prediction. The measurements were per-
formed on a Personal Computer with a 200MHz Pentium

processor running Solaris 2.5.1. These measurements show
that cost-complexity pruning is successful in finding Chase

Figure 5: Bar charts of the accuracy (black), TP-FP (dark gray), savings (light gray) and throughput (very

light gray) of the Chase (right) and First Union (left) meta-classifiers as a function of the degree of pruning.

meta-classifiers that retain their performance levels to 100%
of the original even with as much as 60% of the base classi-
fiers pruned or within 60% of the original with 90% pruning.
At the same time, the pruned classifiers exhibit 230% and
638% higher throughput. For the First Union base clas-
sifiers, the results are even better. With 80% pruning, the
pruned meta-classifiers have gain ratios G ' 1 and with 90%
pruning they are within 80% of the original performance.
The throughput improvement in this case is 5.08 and 9.92
times better, respectively.

In absolute numbers, the best meta-classifier achieves on
average 89.66% accuracy, 0.632 TP-FP spread and saves
$903K per data subset under a realistic cost model [31]
(maximum savings: $1,470) and the best First Union meta-
classifiers achieves 96.53% accuracy, 0.848 TP-FP spread
and $950K per data subset (maximum savings: $1,085). In
contrast, the best base classifier in Chase is 88.5% accurate,
with 0.551 TP-FP spread and $812K in savings while the
best First Union base classifier is 95.2% accurate with 0.749
TP-FP spread and $806K in savings.

5. CONCLUDING REMARKS
Constructing ensembles of classifiers computed over sep-

arate data sets is a scalable and effective solution to learn-
ing over large and distributed databases. In this paper, we
addressed a shortcoming of this approach that has largely
been ignored, the increased demand for run-time system re-
sources. The final ensemble meta-classifier may consist of a
large collection of base classifiers that require significantly
more memory resources, while substantially slowing down
classification throughput. We described a pruning algo-
rithm, called post-training pruning, that seeks to determine
the base classifiers that are redundant or “less-important”
to the classification process of the ensemble meta-classifier.
Thus, given a set of system constraints and requirements,
the algorithm computes a smaller and faster ensemble meta-
classifier with predictive performance that is comparable to
the original meta-classifier.

We evaluated the post-training pruning algorithm on real
credit card transaction data sets provided by two separate
institutions. Our results demonstrated that our algorithm
is successful and highly robust in computing pruned meta-
classifiers that preserve the predictive performance of the
original unpruned meta-classifiers even when system con-
straints call for heavy pruning. This line of work, however,
is far from being complete; future research plans include
studying of alternative algorithms and methods for explor-
ing (analytically, empirically and graphically) the relation-
ships among base classifiers and meta-classifiers. To our
knowledge, there have been little attempts to incorporate
resource requirements in the process of forming ensemble
classifiers, even though such constraints are common place
for operational systems.

6. ACKNOWLEDGMENTS
We are in debt to Chris Merz for providing us with his

implementation of the SCANN algorithm.

7. REFERENCES
[1] K. Ali and M. Pazzani. Error reduction through

learning multiple descriptions. Machine Learning,
24:173–202, 1996.

[2] L. Breiman. Heuristics of instability in model
selection. Technical report, Department of Statistics,
University of California at Berkeley, 1994.

[3] L. Breiman. Stacked regressions. Machine Learning,
24:41–48, 1996.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees.
Wadsworth, Belmont, CA, 1984.

[5] P. Chan and S. Stolfo. Meta-learning for multistrategy
and parallel learning. In Proc. Second Intl. Work.
Multistrategy Learning, pages 150–165, 1993.

[6] P. Chan and S. Stolfo. Toward parallel and distributed
learning by meta-learning. In Working Notes AAAI

Work. Knowledge Discovery in Databases, pages
227–240, 1993.

[7] P. Chan, S. Stolfo, and D. Wolpert, editors. Working
Notes for the AAAI-96 Workshop on Integrating
Multiple Learned Models for Improving and Scaling
Machine Learning Algorithms, Portland, OR, 1996.

[8] W. Cohen. Fast effective rule induction. In Proc. 12th
Intl. Conf. Machine Learning, pages 115–123. Morgan
Kaufmann, 1995.

[9] M.W. Craven and J. J. W. Shavlik. Extracting
tree-structured representations of trained networks.
Advances in Neural Information Processing Systems,
8, 1996.

[10] T.G. Dietterich. Machine learning research: Four
current directions. AI Magazine, 18(4):97–136, 1997.

[11] P. Domingos. Knowledge acquisition from examples
via multiple models. In Proc. Fourteenth Intl. Conf.
Machine Learning, pages 98–106, 1997.

[12] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. In Proceedings of the Second European
Conference on Computational Learning Theory, pages
23–37. Springer-Verlag, 1995.

[13] Y. Freund and R. Schapire. Experiments with a new
boosting algorithm. In Proc. Thirteenth Conf.
Machine Learning, pages 148–156, 1996.

[14] Michael J. Greenacre. Theory and Application of
Correspondence Analysis. Academic Press, London,
1984.

[15] Y. Guo and J. Sutiwaraphun. Knowledge probing in
distributed data mining. In P. Chan H. Kargupta,
editor, Work. Notes KDD-98 Workshop on Distributed
Data Mining, pages 61–69. AAAI Press, 1998.

[16] R.A. Jacobs, M.I. Jordan, S. J. Nowlan, and G. E.
Hinton. Adaptive mixture of local experts. Neural
Computation, 3(1):79–87, 1991.

[17] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures
of experts and the EM algorithm. Neural
Computation, 6:181–214, 1994.

[18] M. I. Jordan and L. Xu. Convergence results for the
em approach to mixtures of experts architectures. In
AI memo 1458, 1993.

[19] E. B. Kong and T. Dietterich. Error-correcting output
coding corrects bias and variance. In Proc. Twelfth
Intl. Conf. Machine Learning, pages 313–321, 1995.

[20] A. Krogh and J. Vedelsby. Neural network ensembles,
cross validation, and active learning. In G. Tesauro,
D. Touretzky, and T. Leen, editors, Advances in
Neural Info. Proc. Sys. 7, pages 231–238. MIT Press,
1995.

[21] M. LeBlanc and R. Tibshirani. Combining estimates
in regression and classification. Technical Report 9318,
Department of Statistics, University of Toronto,
Toronto, ON, 1993.

[22] D. Margineantu and T. Dietterich. Pruning adaptive
boosting. In Proc. Fourteenth Intl. Conf. Machine
Learning, pages 211–218, 1997.

[23] C. Merz. Using correspondence analysis to combine
classifiers. Machine Learning, 1999. In press.

[24] C. Merz and M. Pazzani. A principal components
approach to combining regression estimates. Machine

Learning, 1999. In press.

[25] M. Minksy and S. Papert. Perceptrons: An
Introduction to Computation Geometry. MIT Press,
Cambridge, MA, 1969. (Expanded edition, 1988).

[26] T. Mitchell. Generalization as search. Artificial
Intelligence, 18:203–226, 1982.

[27] D. W. Opitz and J. J. W. Shavlik. Generating
accurate and diverse members of a neural-network
ensemble. Advances in Neural Information Processing
Systems, 8:535–541, 1996.

[28] J. Ortega, M. Koppel, and S. Argamon-Engelson.
Arbitrating among competing classifiers using learned
referees. Machine Learning, 1999. in press.

[29] M. P. Perrone and L. N. Cooper. When networks
disagree: Ensemble methods for hybrid neural
networks. Artificial Neural Networks for Speech and
Vision, pages 126–142, 1993.

[30] A. L. Prodromidis and S. J. Stolfo. Pruning
meta-classifiers in a distributed data mining system.
In Proc of the First National Conference on New
Information Technologies, pages 151–160, Athens,
Greece, October 1998. Extended version.

[31] A. L. Prodromidis and S. J. Stolfo. Agent-based
distributed learning applied to fraud detection.
CUCS-014-99, 1999.

[32] A. L. Prodromidis, S. J. Stolfo, and P. K. Chan.
Effective and efficient pruning of meta-classifiers in a
distributed data mining system. Technical report,
Columbia Univ., 1999. CUCS-017-99.

[33] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1:81–106, 1986.

[34] J. R. Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[35] R.J Quinlan and R.L. Rivest. Inferring decision trees
using the minimum description length princliple.
Information and Computation, 80:227–248, 1989.

[36] Waterhouse S. R. and Robinson A. J. Classification
using hierarchical mixtures of experts. In IEEE
Workshop on Neural Networks for Signal Processing
IV, pages 177–186, 1994.

[37] R. Schapire. The strength of weak learnability.
Machine Learning, 5:197–226, 1990.

[38] S. Stolfo, A. Prodromidis, S. Tselepis, W. Lee,
W. Fan, and P. Chan. JAM: Java agents for
meta-learning over distributed databases. In Proc. 3rd
Intl. Conf. Knowledge Discovery and Data Mining,
pages 74–81, 1997.

[39] Volker Tresp and Michiaki Taniguchi. Combining
estimators using non-constant weighting functions.
Advances in Neural Information Processing Systems,
7:419–426, 1995.

[40] D. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

