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Abstract—Drug repositioning is a challenging computational problem involving the integration of heterogeneous sources of biomolec-
ular data and the design of label ranking algorithms able to exploit the overall topology of the underlying pharmacological network. In
the context of the drug repositioning problem, the inference step is usually performed into an inhomogeneous similarity space induced
by the relationships existing between drugs and a second type of entity (e.g. disease, target, ligand set), thus making unfeasible a
drug ranking within a homogeneous pharmacological space. To deal with this challenging problem, we designed a general framework
based on bipartite network projections by which homogeneous pharmacological networks can be constructed and integrated from
heterogeneous and complementary sources of chemical, biomolecular and clinical information. Moreover, we present a novel algorithm
based on kernelized score functions that adopts both local and global learning strategies to effectively rank drugs in the integrated
pharmacological space. We applied the proposed methods to a novel semi-supervised drug ranking problem: prioritizing drugs in
integrated bio-chemical networks according to specific DrugBank therapeutic categories. Detailed experiments with more than 80
DrugBank therapeutic categories involving about 1300 FDA approved drugs show the effectiveness of the proposed approach.

Index Terms—Drug ranking, drug repositioning, network integration, kernel functions, systems biology, graph nodes ranking

1 INTRODUCTION

The very conservative drug development strategy, which
typically consists in the discovery of new therapeutics
targets followed by a slow, costly and risky validation,
results in a consistent increment in research and de-
velopment spending [1]. On the contrary, repurposing
already approved and marketed drugs can speed up
their application to clinical practice, because in this way
we can take advantage of existing rigorous testing re-
quired by the U.S. Food and Drug Administration (FDA)
and other regulatory agencies. Drugs repurposing, also
referred to as drugs repositioning, is less costly when
compared to the results of traditional discovery efforts,
which typically takes 10-15 years and upwards $1 billion,
while revenues due to repurposed drugs can exceed
billions [2].

Drug repositioning, i.e. the prediction of novel ther-
apeutic indications for existing drugs, is a challenging
problem in modern computational biology. Computa-
tional approaches for drug repositioning focused mainly
on small-scale applications, such as the analysis of spe-
cific classes of drugs or drugs for specific diseases [3], [4],
[5], [6]. Large-scale applications, involving a relatively
large number of drugs and diseases, count only a few
examples [7], [8], [9], [10].

Different computational tasks related to the the drug
repositioning problem have been proposed, ranging
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from clustering drugs either considering their pharma-
cophore descriptors [3] or Connectivity Map-based net-
works [8], to prediction of drug-target interactions [11],
[12], or drug-disease associations [13], [9] using super-
vised or semi-supervised approaches. While the clus-
tering approach does not require “a priori” knowledge
about drugs (but should in principle require the appli-
cation of methods to assess the reliability of clustering
results [14]), the latter approach requires that at least a
partial labeling of the drugs is known in advance, but by
exploiting the available “a priori” knowledge classical
techniques to evaluate supervised algorithms can be
applied to assess the prediction performances [15].

In the context of semi-supervised learning of net-
work labeling, we propose a novel prediction task,
i.e. the large-scale ranking of drugs with respect to
DrugBank therapeutic categories[16]. We chose Drug-
Bank categories since their associations to drugs are
manually curated using medical literature such as
PubMed, e-Therapeutics (http:/ /www.e-therapeutics.ca)
and STAT!Ref (AHFS) (http://online.statref.com), and
because “at present, there is not a comprehensive and
systematic representation of known drugs indications
that would enable a fine-scale delineation of types of
drug-disease relationships” [17]. The ranking of drugs
for each DrugBank therapeutic category (TC) can al-
low the choice of top ranked “false positive” drugs as
natural candidates for drug repositioning, while a pure
classification approach cannot provide such preferential
candidates.

Several works showed that network integration plays
a central role in different molecular systems biology
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problems [18], ranging from disease genes discovery [19]
to gene function prediction [20] and drug reposition-
ing [21]. Unfortunately, in the context of drug reposi-
tioning, the inference step is usually performed into an
inhomogeneous similarity space induced by the relation-
ships existing between drugs and a second type of entity
(e.g. disease, target, ligand set), thus making unfeasible
a drug ranking within homogeneous pharmacological
spaces. To deal with this problem, we propose a gen-
eral framework based on bipartite networks projections
for the construction of homogeneous pharmacological
spaces, by which, starting from heterogeneous networks
of data involving interactions between two different
sets of nodes (e.g. drug-protein targets, drug-pathways,
drug-side effects), we can obtain homogeneous drug-
drug networks that implicitly embed previous interac-
tions into homogeneous pharmacological spaces. The
nature of these network-structured projected spaces al-
lows the application of prediction algorithms to homo-
geneous drug-drug networks that no longer represent a
physical reality, but informational constructs related to
the pharmacological similarity between drugs. Bipartite
graphs have been just successfully applied to integrate
different “omics” data in yeast molecular networks [22],
and to identify global relationships between different
diseases [23]: in this work we apply them in a more gen-
eral framework to improve the integration of different
sources of chemical, biomolecular and clinical sources
of information in the context of the drug ranking and
repositioning problem.

Most of the node label ranking algorithms proposed
for the analysis of biomolecular networks exploit local or
global learning strategies to properly rank nodes, accord-
ing to the biological property under investigation [24],
[25], [18]. In this work we propose a very fast semi-
supervised network method that combines both local
and global learning strategies to exploit both “local”
similarities between drugs and “global” similarities em-
bedded in the topology of the pharmacological network,
following an approach that we very recently successfully
applied to the gene function prediction problem [26]
and to discover genes related to diseases [27]. Indeed
our proposed Score Functions adopt both local learning
strategies based on a generalized notion of distance in a
universal reproducing kernel Hilbert space, and global
learning strategies based on the choice of random walk
kernels kernels to exploit the overall topology of the
underlying pharmacological network.

We evaluated the proposed approach by integrating
three pharmacological similarity spaces accounting, re-
spectively, for chemical similarity, drug-targets interac-
tion similarity and drug-chemicals similarity, in order to
rank a curated set of U.S. Food and Drug Administra-
tion (FDA) approved drugs according to the DrugBank
therapeutic categories.

The paper is structured as follows: in Section 2 we
present NetPro, Pharmacological Spaces Integration
based on Networks Projections, a method to construct

homogeneous pharmacological spaces from heteroge-
neous bipartite networks, and moreover we discuss how
to construct an integrated pharmacological space by a
progressive combination of different projected networks
obtained from heterogeneous sources of data. In Sec-
tion 3 we introduce the drug ranking methods applied in
this work, including our proposed Score Functions based
on Kernelized Random Walks. In the successive section we
provide a large set of experiments involving 81 Drug-
Bank therapeutic categories to show the effectiveness of
1 NetPro and of the proposed drug ranking methods. The
conclusions summarize the main results and the possible
developments of this work.

2 ¢ NetPro, PHARMACOLOGICAL SPACES IN-
TEGRATION BASED ON NETWORKS PROJEC-
TIONS

We propose 1NetPro, Pharmacological Spaces Integra-
tion based on Networks Projections, a general approach
to construct and integrate different pharmacological sim-
ilarity spaces capturing different pharmacological char-
acteristics of drugs. In Section 2.1 we introduce the
bipartite network projection method to construct homo-
geneous spaces from inhomogeneous spaces represented
though bipartite networks, and in Section 2.2 we show
how to construct and integrate different pharmacological
spaces using different sources of chemical, biomolecular
and pharmacological data.

2.1 Bipartite networks projections

Many relationships naturally come in a bipartite setting.
Common examples are authors that write articles, people
that visit web pages and many others. In computational
biology this kind of relationships can be used, just to cite
a few, for the investigation of the interactions between
proteins and genes or between enzymes and metabolites
using networks composed by two types of nodes.

Fig. 1. A toy bipartite network and its unipartite projec-
tions. (I) Original bipartite network. Top (T) nodes are
labeled by letters and bottom (L) nodes are labeled by
numbers. (ll) Projection in the T domain. (lll) Projection
in the L domain.

Bipartite or two-mode networks (Fig. 1 I ) can be
naturally modeled as bipartite graphs. A bipartite graph
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is a triplet B = (T, L, E) where T is the set of top nodes,
1 is the set of bottom nodes, TN L=0 and £ C Tx L
is the set of edges. The difference with unipartite graphs
consists in the fact that the nodes lie in two disjoint
sets, and the edges are always between a node of one
set and a node of the other set. Bipartite networks can
be projected into one-mode networks (composed by a
single type of nodes). More precisely the T-projection of
B = (T, L,E) is the graph Bt = (VT E1) in which two
nodes u,v € T are connected if they share at least one
neighbour z €l in the original bipartite graph B. The
set of edges in the projected unipartite graph B is thus:

Er ={(u,v),3x €l: (u,z) € EA(v,2) € E} (1)

The L-projection G is defined dually (Fig. 1). This
operation is commonly referred to as “binary mode
projection” and is suitable for the induction of a ho-
mogeneous similarity space between vertices v € T (or
1) in the bipartite graph B (Fig. 1). In the following,
for the sake of simplicity, we represent projected graph
Bt = (V',ET1) as G = (V,E) and its adjacency matrix
as W.

The binary mode projection produces one-mode net-
works containing binary edges, but more complex pro-
jection schemes can assign edge weights according to
the edge weights in the bipartite two-mode network, or
to the number of shared neighbors, or to the number
of nodes which each shared neighbor is connected to
[CITANEWMANZ2001]. In our experiments we adopted
the binary projection technique, since the bipartite drug-
target data downloaded from the DrugBank database
are unweighted, and for homogeneity we applied a
binary projection also to the other considered data (see
Section 2.2 for more details). The bipartite network
projection scheme may induce different pharmacological
similarity spaces depending on the nature of the bipartite
network (e.g. drug-protein or drug-chemicals interaction
bipartite networks), but the projected networks corre-
spond to homogeneous pharmacological spaces repre-
senting different notions of induced pharmacological
similarity between drugs.

2.2 Construction and integration of pharmacologi-
cal networks

Once projected onto one-mode networks G = (V, E),
the drugs similarity spaces induced from the bipartite
graphs can be combined using appropriate network in-
tegration methods and proper normalization techniques.
For instance, we adopted the normalized graph Lapla-
cian L [28] to make comparable the pharmacological
networks G =< V, E > represented through the corre-
sponding symmetric adjacency matrices W:

L=D*D-W)D :=I-D WD (2

where D is a diagonal matrix with elements d; =
> ; wij, I is the identity matrix and w;; are the elements
of the matrix W.

In our setting we integrated multiple networks with
a simple technique that assures a high coverage of
the drugs included in the integrated pharmacological
network, without penalizing drugs for which a specific
source of data is unavailable. More precisely, given a
set of n pharmacological networks G¢ =< V4 E¢ >
,1 < d < n, constructed through appropriate bipartite
graph projections, the integrated pharmacological net-
work G =< V,E >, withV =J,V?and E C |J, E¢, can
be derived by averaging the normalized edge weights
only when data for the corresponding pair of drugs is
actually available. In other words, if wf; represents the
weight of the edge (v;,v;) € E?, the weight w;; of the
edge (v;,v;) € E is computed as follows:

1
W= ogg 2 v ®
] deD(i,5)
where D(i,j) = {d|v; € V¥ Av; € V}.

It is worth noting that other network integration meth-
ods may lead to better results (e.g. weighted integrated
networks that take into account the information content
of each source of data), but we applied this simple
approach only to show the feasibility and effectiveness
of the proposed overall approach.

We constructed three pharmacological similarity net-
works reflecting the pairwise chemical structure sim-
ilarity between drugs (Nstructsim), the similarity be-
tween drugs derived from common protein targets
(NdrugTarget) and the pairwise similarity from chemical-
chemical interactions (Ngrugchem) between the consid-
ered drugs and other chemicals involved in their phar-
macological activity.

2.2.1 Chemical and pharmacological data bases.

We constructed three pharmacological similarity net-
works reflecting the pairwise chemical structure sim-
ilarity between drugs (Nstructsim), the similarity be-
tween drugs derived from common protein targets
(NdrugTarget) and the pairwise similarity from chemical-
chemical interactions (Ngrugchem) between the consid-
ered drugs and other chemicals involved in their phar-
macological activity. They have been constructed using
data collected from the DrugBank [16] and STITCH [29]
public databases.

DrugBank is a unique bioinformat-
ics/chemoinformatics resource that combines detailed
drug (i.e. chemical) data with comprehensive drug
target (i.e. protein) information. In the current release
DrugBank contains detailed information about 6707
drug entries including 1436 FDA-approved small
molecule drugs. In order to construct a highly reliable
drugs set we selected from DrugBank the largest set
of FDA approved drugs targeting at least one FDA
approved target. This led to the definition of a collection
composed by 1253 drugs.

STITCH integrates data distributed over many
databases. For instance, the chemical-chemical interac-
tion networks stored in STITCH includes information
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Fig. 2. Progressive integration of network data.

about the impact of genetic variation on drug response
and from the Comparative Toxicogenomics Database
(which contains more than 8500 direct chemical-disease
relationships), thus ensuring the existence of drug-drug
relationships induced by common genetics and/or toxi-
cogenomics disease-association profiles [30], [31].

2.2.2 Constructing pharmacological spaces from differ-
ent sources of data.

The construction of Ngiyyetsim 1S based on the direct
computation of the structural chemical similarities
between each pair of drugs, while for the other
pharmacological spaces we applied the projection
techniques described in Section 2.1. More precisely
it has been obtained by computing the Tanimoto
similarity scores between each pair of drugs in
the reference set [32]. The scores were obtained
by comparing the simplified molecular input line
entry specification (SMILES) annotations contained in
DrugBank entries [33]. The obtained adjacency matrix
was then converted into a binary matrix by thresholding
the similarity scores according to the procedure reported
in [11] (threshold t = 0.5).

The second considered similarity space, NgrugTarget,
was obtained by creating a bipartite network between
the drugs and all the FDA approved targets, according to
the information stored in DrugBank. Once constructed,
this network has been projected onto a one mode net-
work and processed according to the procedures de-
scribed in Section 2.1.

The third pharmacological similarity space
(Ngrugchem) has been constructed by processing the
chemical-chemical interactions stored in the STITCH 2.0
database [34]. This dataset is expected to be informative
because these interactions are obtained by considering
many sources of information (i.e. metabolic pathways,
binding experiments, phenotypic effects and drug-target
relationships). In STITCH each predicted drug-chemical
interaction is stored along with a quality score. The
original bipartite graph encoding these interactions has
been sparsified by removing all the interactions with
score below 0.7. This threshold was empirically selected
by testing all the values ranging from 0.5 to 0.9 at steps

of 0.1 and searching for the larger value able to cover,
after the binary mode projection, at least half of the
drugs in our reference set (the vertices of the Nyt ryctsim
network). The thresholding led to a final coverage of
50% of the drugs in our reference set.

2.2.3 Progressive integration of pharmacological net-
works.

The computed pharmacological networks have been
progressively integrated to enrich the encoded drug-
drug relationships with different and complementary
sources of information while preserving a high-coverage
of drugs for large scale drugs repositioning. To this end
we considered at first the Ngipyersim space alone (that
is the space with the highest drug coverage), then we
progressively integrated the other two pharmacological
spaces characterized by a lower coverage, that is respec-
tively Narugrarget and Ngrygchem- These progressively
enriched pharmacological networks have been repre-
sented through the corresponding adjacency matrices
Wi, Wy and W3, where the numeric index indicates
the number of different integrated pharmacological net-
works (Fig. 2). Despite the number of nodes/drugs in
the three networks is the same (1253), our “progressive
integration” strategy yields to a significant increment
in the number of the edges, that grow from 13010,
to 43827 and 96711 respectively in W, W, and W.
This correspond to a roughly 7.5 folds increment in
the network density §(G) = % where m is the
number of existing edges and n is the number of nodes.
The network densities of the pharmacological spaces
involved in our experiments are 0.01658, 0.05587 and
0.12329 for W, W, and W 3 respectively. Fig. 3 provides
a visual clue of the integrated W3 network.

3 DRUG RANKING METHODS

Drug ranking can be formalized as a semi-supervised
node label ranking problem on a graph. Let G =< V, E >
be an undirected weighted graph, representing a phar-
macological network W, and let Vo C V be a subset of
drugs belonging to a priori known therapeutic category
C, the drug ranking problem consists in finding a score
function S : V. — RT, by which we can directly
rank vertices according to their likelihood to belong to
a specific therapeutic category C: the higher the score,
the higher the likelihood that a drug belongs to C. Drug
ranking can be seen as a “one-class” semi-supervised
learning problem on pharmacological networks W, since
we can exploit the labeling of the known positive vertices
v € Vi belonging to the therapeutic category C, but also
the similarity relationships between labeled or unlabeled
vertices v € V' \ V.

In our experiments we compared results obtained with
random walks and random walk with restart with our
novel proposed method that can be interpreted as a
kernelized extension of the classical random walks. As a
baseline we applied a simple guilt-by-association-based
method.
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Fig. 3. Graph of the integrated W 3 pharmacological network (1253 nodes and 96711 edges). Lighter nodes represent
drugs with a higher number of connections (edges) with other drugs in the integrated pharmacological space.

3.1

Guilt by association (GBA) is a general biological prin-
ciple by which a biomolecular entity that interacts or
shares some features with another biomolecular entity
can also shares some specific biological property. For
instance, if a gene A shares an expression patterns
or a genetic interaction with gene B and gene A is
annotated for a given Gene Ontology (GO) term, it
is likely that gene B can be annotated for the same
term [35]. In computational biology this basic biological
principle has been exploited to develop methods able to
assign a given biological or molecular property on the
basis of the labeling of neighborhoods in biomolecular
networks [24], [36]. In the context of pharmacological
networks (Section 2) we can assess the likelihood that a
given drug belongs to a given Therapeutic Category C
on the basis of the C-labeled drugs directly connected to
the drug under study.

As a baseline, we implemented a simple version of
the GBA approach, by which a score for each node/drug
is computed by choosing the maximum of the weights
w;; € W of the edges connecting the node v; with
positive labeled nodes v; € V¢ in the neighborhood N (%)
of (UM

Guilt by Association

S(vi, C) = mazjen i wij ()
where N (i) = {jlv; € Vo A (vi,v;) € E}.

3.2 Random Walks and Random Walks with Restart

Random walk (RW) algorithms [37] can capture not
only relationships coming from direct neighborhoods
between drugs, similarly to guilt by association methods,

but also relationships coming from shared and more in
general indirect neighbours between drugs. Indeed RW
ranks drugs by exploring and exploiting the topology of
the pharmacological network: random walks across the
network are performed starting from a subset Vo C V' of
drugs belonging to a specific therapeutic category C' by
using a transition probability matrix @ = D~'W, where
W is the adjacency matrix, and D is a diagonal matrix
with diagonal elements d;; = 3 ; Wije The elements ¢;;
of @ represent the probability of a random step from
v; to v;. The initial probability of belonging to the set
of drugs corresponding to a given therapeutic category
can be set to p, = 1/|V¢| for the drugs v € Vo and
to p, = 0 for the drugs v € V \ Vg: this represents
the “a priori” knowledge about the membership of the
drugs to a specific therapeutic category, and in principle
these initial probabilities can be set to different values
for each drug (if we dispose of “a priori’ information
detailed enough to justify this setting). Then RW adopts
an iterative strategy to update the probability vector p,
of finding a “random walker” at step ¢ in the nodes
veV:

Dy = QTpt @)

The update (5) is iterated until convergence or can be
stopped after a fixed number of steps if we would only
like to partially explore the topology of the network. We
could observe that the random walker could progres-
sively “forget” the a priori information available for the
therapeutic category C, by iteratively walking across the
overall network. To avoid this problem, we can stop the
RW algorithm after a few iterations, as outlined above,
or we can apply the random walk with restart (RWR)
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method: at each step the random walker can move to one
of its neighbours or can restart from its initial condition
with probability ¢:

D1 = (1- Q)QTPt +0p, (6)

It can be shown that the stationary distribution
of p in RWR is determined by the largest eigen-
value/eigenvector pair of the matrix Q' = [0I +(1—6)Q)]
obtained from (6), where I is the identity matrix, and
values of p at convergence determine the ranking of
the nodes [28]. With both RW and RWR methods at the
steady state we can rank the vector p to prioritize drugs
according to their likelihood to belong to the therapeutic
category under study.

3.3 Score Functions based on Kernelized Random
Walks

Random walks exploit the global topology of the net-
work (Section 3.2), while GBA methods introduce sim-
ple, but effective local learning strategies to rank nodes
according to the structure of their neighborhood. We
propose a novel method that on the one hand generalizes
the local learning strategy of GBA methods and on
the other hand adopts a global learning strategy by
embedding in a kernel function the random walking
across the network.

More precisely, we can define a distance measure
D(v, V) between a drug v € V and the set of the
drugs = € V¢ in a reproducing kernel Hilbert space H,
according to a suitable mapping ¢ : V' — #. For instance,
we can consider the minimum euclidean distance in the
Hilbert space H between a drug v € V and the set of
drugs Ve belonging to a specific therapeutic category:

Dyn(v,Ve) = min ||(b (x)” 2 )

zeVe
By recalling that < ¢(-),¢(-) >= K(-,-), where K :
V' xV — Ris a kernel function associated to the mapping
¢, we can choose in principle any valid kernel, but in this
context it is meaningful to use a random walk kernel [28]
constructed from the adjacency matrices W;, W, and
W, since it provides a similarity measure that takes
into account direct and indirect relationships between
drugs in the pharmacological space. The Gram matrix K
associated to the one-step random walk kernel function
K(-,-) is obtained from the adjacency matrix W of the
pharmacological network:

K=(a—1)I+D WD : 8)

where I is the identity matrix, D is the “degree” diag-
onal matrix with elements d;; =  Wij and a is a value
larger than 2. The g-step random walk kernel is a slight
generalization of (8):

Ki=[a-1)I+D :WD 3 ©)

where ¢ > 2 is an integer representing the number of
steps of the random walk across the graph and can be
easily computed by adopting a recursive strategy:

Ki=KI 'K (10)

When ¢ = 1 it is simply the one-step random walk kernel,
by which only the direct neighbours of each node are
visited. By setting ¢ = 2, the random walks consider
also indirect neighbours, that is two nodes are similar if
either they are directly connected or they share common
nodes in their neighborhood. More in general, by setting
g > 2 two vertices are considered similar if they are
directly connected of if they are connected through a
path including from 1 to ¢ — 1 intermediate vertices. In
principle also very long paths could be considered, but
this could introduce very remote similarities between
genes, leading to behaviours similar to that of diffusion
kernels [38]. The name of the kernel derives from the
fact that (9) is up to scaling terms equivalent to a g-
step random walk on the graph with random restarts,
a well-known algorithm used for scoring web pages in
the Google search engine [39].

By developing the square (7) we can derive the fol-
lowing similarity measure:

— min [K(v,v) — 2K (v,2) + K(z,x)]
xeVe
(11)
By assuming an equal auto-similarity K (z,z) for all
x € V, we can simplify (11), thus achieving the nearest
neighbours score Sy

S Vo) = — min —2K =2 K
v (v, Vo) = — min (v,2) = 2 max K (v, z)

SimNN(v, Vc) =

(12)

It is easy to see that a different notion of distance based
on the first k nearest-neighbours leads to the definition
of the k-nearest neighbours score Sinn:

SkNN(U, VC) =2 Z K(U,I)
z€l) (v)
with I (v) = {z € Ve|z is ranked in the first £ in Vo }.
In a similar way we can also derive the average score
similarity measure S4yv based on the average distance
D 4y with respect to to the set of drugs Vi belonging to
the C therapeutic category:

|V|ZKU1'

zeVe

(13)

Sav (v, Vo) = (14)

It is worth noting that the Sy score is similar to
that recently proposed in the context of gene function
prediction from synthetic lethality networks, and from
this standpoint our approach can be viewed as an ex-
tension of the algorithm presented in [40]. By using
the proposed kernelized score functions we can rank
drugs with respect to their likelihood to belong to a
given therapeutic category C' simply by evaluating the
random walk kernel. If the kernel matrix is computed in
advance, the time complexity of the proposed algorithm
is O(|Ve||V]), that is approximately linear with respect
to the number of drugs when |V¢| << |V].
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4 RESULTS AND DISCUSSION

We propose a novel learning problem in the context of
drug ranking and repositioning: the prediction of the
therapeutic category of drugs according to the annota-
tions provided by DrugBank 3.0. The ¢¥)NetPro construc-
tion and integration of the pharmacological networks
Wi,Wy and W3 (Section 2) have been applied to
predict the therapeutic category of drugs according to
the annotations provided by DrugBank 3.0, by ranking
nodes for each therapeutic category through the algo-
rithms described in Section 3.

4.1 Experimental Setup
TABLE 1
DrugBank Therapeutic Categories (TC) with more than
15 drugs considered in the experiments. The first column
reports the abbreviated name, the second the full
DrugBank name and the third the cardinality of the TC.

Therapeutic categories with more than 15 drugs
Abbreviated name Full DrugBank name name Card.
Adren.A. Adrenergic_Agents 26
Adren.In. Adrenergic_Uptake_Inhibitors 20
Adren.a. Adrenergic_alpha.Agonists 23
Adren.b. Adrenergic_beta.Antagonists 25
Analges. Analgesics 40
Analg.Op. Analgesics._Opioid 24
Anti.Aller. Anti.Allergic_Agents 35
Anti.Arrh. Anti.Arrhythmia_Agents 42
Anti.Bact. Anti.Bacterial_Agents 103
Anti. HIV Anti.HIV_Agents 22
Anti.Inf.A. Anti.Infective_Agents 29
Anti.Inf. Anti.Infectives 19
Anti.Ulcer Anti.Ulcer_Agents 19
Anti.anx. Anti.anxiety_Agents 35
Anti.infl. Anti.inflammatory_Agents 49
Antiarr.A. Antiarthythmic_Agents 29
Anticonv. Anticonvulsants 46
Antidysk. Antidyskinetics 23
Antiemetics Antiemetics 34
Antifungal Antifungal_Agents 22
Antihist. Antihistamines 24
Antihypert. Antihypertensive_Agents 105
Antimetab. Antimetabolites 26
Antineopl. Antineoplastic_Agents 86
Antineopl.H. Antineoplastic_Agents._Hormonal 18
Antipark. Antiparkinson_Agents 27
Antipsyc.A. Antipsychotic_Agents 39
Antipsyc. Antipsychotics 27
Antiviral Antiviral_Agents 25
Bronchodil. Bronchodilator_Agents 33
Ca.Ch.Block. Calcium_Channel_Blockers 22
Cephalosp. Cephalosporins 30
Cycloox.Inh. Cyclooxygenase_Inhibitors 24
Dietary.sup. Dietary_supplement 47
Diuretics Diuretics 23
Dopam..Ant. Dopamine_Antagonists 29
Enzyme.Inh. Enzyme_Inhibitors 64
GABA.Mod. GABA_Modulators 26
Glucocort. Glucocorticoids 21
Hist.H1.Ant. Histamine_H1_Antagonists 28
Hypnot.Sed. Hypnotics_and_Sedatives 41
Hypoglyc. Hypoglycemic_Agents 22
Immunosup. Immunosuppressive_Agents 20
Micronutr. Micronutrient 45
Musc.Ant. Muscarinic_Antagonists 23
Narcotics Narcotics 22
Penicillins Penicillins 20
Sympathol. Sympatholytics 24
Sympathomim. Sympathomimetics 32
Vasoconstr. Vasoconstrictor_Agents 25
Vasodilator Vasodilator_Agents 55

In order to obtain the therapeutic category labels we
parsed the DrugBank entries belonging to our reference
set (1253 FDA approved drugs, see Section 2.2.1) by
extracting all the drug category annotations excluding
the chemical categories (categories reflecting the chem-
ical nature of the considered compounds). We then
removed from our therapeutic categories set all the

classes associated to less than 15 drugs obtaining 51
therapeutic classes, in order to exclude classes with too
few positive examples to assure reliable predictions. The
classes represented in this set are very broad in nature
ranging, only to cite a few, from “Diuretics” to “Anti
Bacterial Agents” and to “Antiparkinson Agents”, and
are characterized by a relatively high unbalance between
labeled and unlabeled nodes (Table 1).

We compared the drug ranking methods described
in Section 3, by using the pharmacological networks
W, Wy and W3 (Section 2). While GBA and RW it-
erated till to convergence have no parameters, for RWR
we run the algorithm with 6 € {0.1,0.3,0.6,0.9}, and we
run also the RW algorithm with a limited number of iter-
ations, by varying the number of steps ¢ € {1, 2, 3,5,10}.
Also for the proposed score functions with random walk
kernel we varied the number of steps ¢ € {1,2,3,5,10}.
In our experiments we did not perform a fine tuning of
the method’s parameters for each class; we simply fixed
the same parameters for all classes and chose the ones
leading to the best results. It is worth noting that a fine
tuning of the parameters for each class (e.g. by internal
cross-validation) may lead to better overall results.

We evaluated the proposed ranking method by using a
5-folds cross validation scheme repeated 10 times. As the
output of the proposed methods is a continuous score for
each drug-therapeutic category pair, we computed the
Area Under the ROC curve (AUC), and the precision at
fixed recall levels by varying recall between 0.1 and 1 at
0.1 steps.

In Section 4.2 we present the compared AUC and
precision at a given recall results averaged across the
therapeutic classes, in Section 4.4 we report the AUC
and precision at a fixed recall results for each therapeutic
category, and Section 4.3 discusses the influence of the
choice of the number of steps in Random Walk kernel
score functions. Finally in Section 4.5 we discuss the
effectiveness of the proposed methods when the cardi-
nality of DrugBank therapeutic categories is very low,
by presenting the drug ranking results for a subset of
DrugBank classes with less than 15 annotated examples,
and in Section 4.6 we report a preliminary analysis of
the top ranked false positives as possible candidates for
drug repositioning.

4.2 Average AUC and Precision at a Fixed Recall
Results

Tab. 2 shows the AUC and precision at 40% recall
averaged across the 51 DrugBank therapeutic classes
with more than 15 drugs. For kernelized score functions,
RWR and RW at fixed steps the parameters giving the
best results are reported.

Independently of the considered methods, the average
AUC and precision at 40% recall (P40R) increases as new
pharmacological spaces are added: most of the increment
is achieved when we integrate 2 pharmacological spaces
(W3), but note that the apparently small increment
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TABLE 2
Average AUC and precision at 40% recall across the DrugBank categories with more than 15 drugs.

Methods AUC P40R
Wi Wy W3 Wi Wo W5

Sav 3 steps 0.8332 | 0.9233 | 0.9372 || 0.5330 | 0.6497 | 0.6931
SknnN 2 steps k=31 | 0.8373 | 0.9261 | 0.9361 0.5334 | 0.6480 | 0.7012
Snn 3 steps 0.8271 | 0.9067 | 0.9224 || 0.3803 | 0.4300 | 0.4653
RWR6=0.6 0.8078 | 0.9203 | 0.9299 || 0.5238 | 0.6278 | 0.6839
RW 1 step 0.8175 | 0.9201 | 0.9272 || 0.4910 | 0.6240 | 0.6799
GBA 0.8027 | 0.9028 | 0.9095 || 0.3273 | 0.4127 | 0.4634
RW 0.6846 | 0.5780 | 0.5334 || 0.2224 | 0.0608 | 0.0366

obtained, e.g. by Sinyn, when we pass from 2 to 3
integrated pharmacological spaces is actually statistically
significant according to the Wilcoxon paired signed rank
test (p-value< 0.005). These results are also confirmed
by the precision at fixed recall levels curves (Fig. 4):
independently of the recall level and the ranking method
considered precision with W3 is larger than precision
with Wy and W pharmacological networks.

An exception is represented by the classical RW that
deteriorates its performances when new sources of data
are added (Tab. 2). Note that RW substantially fails in
these ranking tasks, since just with W (i.e. consider-
ing only the raw chemical similarities between drugs)
this method is significantly worse than all the other
ones. This is likely to the fact that the random walk is
performed until the convergence condition is reached,
thus resulting in an exploration of too remote and not
significant relationships between drugs, that introduce
noise in the probabilities achieved at the steady state.
Indeed both RW 1 step and RWR achieve largely better
results, since they do not “forget” the initial conditions,
by exploring only the direct neighborhood of each drug
(RW 1 step) or restarting with a certain probability £ form
the initial conditions (RWR).

The average AUC and P40R are always larger in Say
and Sjynn with respect to the other compared methods
(Tab. 2), and the differences across the therapeutic cat-
egories are always statistically significant (p — value <
0.005, Wilcoxon paired signed rank test) except for the
AUC with W with respect to Sy, and between Say
and RWR and RW 1 step with W. Quite surprisingly the
simple GBA method achieves very good average results
in terms of AUC, while with P40R (Tab. 2) and more in
general with precision at fixed recall levels we observe
a larger difference with respect to the other considered
methods (Fig. 4). Note that a similar behaviour can
be observed also in Syy, even if quite always Snw
obtains significantly better results than GBA both in
terms of AUC and P40R. This is not surprising since both
the methods adopt a “nearest-neighbour” local learning
strategy to compute the score associated to each gene
(compare (4) and (12)), but Syy embeds a random
walk kernel that can exploit the overall topology of the
network.

Summarizing, the integration of multiple sources of
information into projected homogeneous pharmacolog-
ical spaces plays a central role to significantly improve
the ranking results. Moreover random walk kernel score
functions and in particular S 4y and Sk n achieve signif-
icantly better results than the other compared methods.

4.3 Influence of the Number of Steps in Random
Walk Kernel Score Functions

Results of the previous section show that random walk
kernel score functions and in particular Sy and Sinwn
achieve significantly better results than the other com-
pared methods. To get more insights into the significance
of the number of steps needed to effectively rank drugs
in pharmacological networks, we compare in Tab. 3 the
average AUC and P40R results of Say with 1, 2, 3, 5
and 10 steps random walk kernels. Values in boldface
highlight the best average results in terms of AUC and
P40R achieved with W;, W, and W3. Interestingly
enough, with most pharmacological networks, there is
no a statistically significant difference between 3, 5 and
10 steps random walk kernels according to the Wilcoxon
paired signed rank test, p — value < 0.005 (for instance,
in terms of AUC with W5 and W3 and in terms of P40R
with all the three pharmacological spaces). Recalling that
3 steps Say has been chosen as the best S4y in terms of
AUC (see Tab. 2), we can conclude that also increasing
the number of steps, on the average, there is no decay
of performance in terms of average AUC and P40R.

To gain more insights into the reasons underlying this
learning behavior of kernelized score functions, we ana-
lyzed the number of wins for each therapeutic category
both in terms of AUC and P40R among Sy with 1,
2, 3, 5 and 10 steps random walk kernels, that is we
counted how many times each k-steps random walk ker-
nel achieved the maximal AUC or P40R (Fig. 5). We can
observe that the “wins” are quite distributed across the
random walk kernels with a different number of steps,
especially if we consider the P40R (Fig. 5 (b)), while for
the AUC (Fig. 5 (a)) we can observe a quite interesting
“peak of wins” of the 10 steps random walk kernel with
the full integrated W3 pharmacological space. These
results show that, according to specific characteristics of
each therapeutic class, different number of steps should
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Fig. 4. Precisions at fixed recall levels, averaged across the 51 therapeutic DrugBank classes with more than 15
annotated drugs, with W, W, and W3 pharmacological networks. (a) Sxnyn; (0) Sav; (€) Svn; (d) RWR; (e) RW 1
step; (f) GBA.

be considered, in order to take into account, at least
for some classes, also “indirect” similarities mediated

through relatively long paths across the pharmacological
space.
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Compared AUC and precision at 40% recall for S 4y with 1, 2, 3, 5 and 10 steps random walk kernels. Results are
averaged across the DrugBank categories with more than 15 drugs.

TABLE 3

N. of steps AUC P40R
Wi Wy W3 W1 Wo W5
1 step 0.8274 | 0.9252 | 0.9303 || 0.5206 | 0.6355 | 0.6996
2 steps 0.8373 | 0.9261 | 0.9360 || 0.5336 | 0.6482 | 0.7005
3 steps 0.8332 | 0.9233 | 0.9372 || 0.5330 | 0.6497 | 0.6931
5 steps 0.8226 | 0.9235 | 0.9365 || 0.5312 | 0.6452 | 0.7005
10 steps 0.8129 | 0.9239 | 0.9370 || 0.5319 | 0.6483 | 0.6955
ST O 1sep m 2
O 2steps B 3steps
— B 5oem | osters
© — | W 10 steps 8 i
oA o - w,

(a)

(b)

Fig. 5. Counts of the "wins” across the therapeutic classes for the S 4y score with 1, 2, 3, 5 and 10 steps random walk
kernels, with W, Wy and W 3 pharmacological networks: (a) Wins with respect to AUC; (b) Wins with respect to the

precision at 40% recall.

It is also worth noting that with the classical RW
algorithm, if we increase the number of steps, we incur
in a progressive decrement of both AUC and P40R (data
not shown): while the classical random walk tends to
forget the initial “a priori” knowledge by iterating the
update step (Section 3.2), the regularization properties
of the random walk kernel and the possibility of staying
at the same node at each step implicitly induced by the
kernel itself (see (8)), allows to maintain the “a priori”
knowledge represented by the core of “positive” drugs
Ve and at the same to exploit the overall topology of the
pharmacological space.

4.4 Per Class AUC and Precision at a Fixed Recall
Results

Fig. 6 shows the AUC results achieved by each drug
ranking method for each DrugBank therapeutic category.
The therapeutic categories are sorted according to the
AUC values obtained by Say with the W3 pharmaco-
logical network. For RW we mean 1-step Random Walk
(recall that by running classical RW till to convergence
we obtain poor results). In Fig. 6 and 7 for each method
we used the parameters listed in Tab. 2. For the cor-
respondences between the therapeutic categories name

abbreviations used in Fig. 6 and 7 and the full DrugBank
names, please see Tab. 1.

By moving from W (Fig. 6 (a)) to W (Fig. 6 (b)) and
W (Fig. 6 (c)) the heatmap “tones” to dark red, showing
the effectiveness of the 1/NetPro approach, independently
of the drug ranking method considered. The “color key”
at the top left of each figure shows also an histogram
of the distribution of AUC values across classes and
across methods, showing a clear skewness towards high
AUC values when we move from W, to W3 (note the
the “Count” ordinate scale doubles from Fig. 6 (a) to
Fig. 6 (b) and from Fig. 6 (b) to Fig. 6 (c)). The same
general trend can be also observed with the precision
at 40% recall (Fig. 7), even if in this case the values are
distributed across a wider range of values. Note that in
Fig. 7 the therapeutic classes are sorted according to the
results achieved by Sinyny with the W3 pharmacological
network, the best performing method in terms of P40R
(Tab. 2). Note also that the AUC values across classes
are highly correlated between methods: this is more
apparent with AUC, while in terms of P40R a very high
correlation is maintained only between Siyn and Sav
(the methods achieving the best results on the average)
and partially between RW and RWR. GBA and Syn
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show a high correlation both in terms of AUC and methods tend to increase when we use the integrated
P40R: this fact confirm the considerations introduced in W3 pharmacological network, showing another time the
Section 4.2 about the similarity of the score functions key role of the projections and the integration to improve
characterizing these methods. The correlation between the overall ranking performances.
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TABLE 4
The 10 best and the 10 worst AUC values of DrugBank
Therapeutic Categories achieved by the S 4y score with
3 steps random walk kernel. The last three columns
report the precision at 10, 20 and 40 % recall.

The 10 best classified TC
TC AUC | P10R | P20R | P40R
Penicillins 0.9999 | 1.0000 | 1.0000 [ 1.0000
Cephalosporins 0.9995 | 1.0000 | 1.0000 | 1.0000
Hypoglycemic_Agents 0.9990 | 1.0000 | 1.0000 | 1.0000
Analgesics._Opioid 0.9979 | 1.0000 | 1.0000 [ 0.8333
Narcotics 0.9977 | 1.0000 | 1.0000 | 1.0000
GABA_Modulators 0.9966 | 1.0000 | 1.0000 | 0.9166
Cyclooxygenase_Inhibitors 0.9950 | 0.7500 | 0.8333 | 0.9090
Diuretics 0.9948 | 0.6000 | 0.6250 [ 0.6923
Glucocorticoids 0.9948 | 1.0000 | 1.0000 | 0.7692
Dopamine_Antagonists 0.9940 | 1.0000 | 1.0000 | 0.7500
The 10 worst classified TC
TC AUC | P10R | P20R | P40R
Vasoconstrictor_Agents 0.8975 | 0.7500 | 0.8333 | 0.6666
Anti.Infectives 0.8776 | 0.4000 | 0.5000 | 0.3478
Antiarrhythmic_Agents 0.8719 | 0.1363 | 0.0895 | 0.1428
Antiviral_Agents 0.8681 | 1.0000 | 1.0000 | 0.5555
Antineoplastic_Agents 0.8657 | 0.6923 | 0.6428 | 0.4605
Antifungal_Agents 0.8616 | 0.7500 | 0.8333 | 0.9000
Immunosuppressive_Agents | 0.8428 0.6666 0.5714 0.4705
Analgesics 0.8402 | 0.1600 | 0.2285 | 0.2758
Anti.Ulcer_Agents 0.8001 | 1.0000 | 1.0000 | 1.0000
Enzyme_Inhibitors 0.7701 | 0.6363 | 0.5909 | 0.4000
TABLE 5

DrugBank Therapeutic Categories (TC) with less than 15
drugs considered in the experiments. The first column
reports the abbreviated name, the second the full
DrugBank name and the third the cardinality of the TC.

Therapeutic categories with less than 15 drugs
Abbr. name Full DrugBank name Card.
Antipyr. Antipyretics 7
Antigl.A. Antiglaucomic_Agents 5
Antirh.A. Antirheumatic_Agents 7
Antitub.A. Antitubercular_Agents 7
Ang.Rec.Ant. Angiotensin_II_Receptor_Antagonists 5
Antithr.A. Antithrombotic_Agents 5
Osteopor.Pr. Osteoporosis_Prophylactic 5
Antidotes Antidotes 5
Nasal.Dec. Nasal_Decongestants 7
Corticost. Corticosteroids 5
Antichol.A. Anticholesteremic_Agents 11
Dermat.A. Dermatologic_Agents 11
Gastroint.A. Gastrointestinal_Agents 10
Sulfonamides Sulfonamides 10
Antid.Tric. Antidepressive_Agents._Tricyclic 10
Muscle.Rela. Muscle_Relaxants._Central 11
Anti.Asth.A. Anti.Asthmatic_Agents 9
TFibrin.A. Fibrinolytic_Agents 11
Nootropic.A. Nootropic_Agents 9
Phenothiaz. Phenothiazines 11
Antibiotics Antibiotics 14
Anticoag. Anticoagulants 15
Antid.IIGen. Antidepressive_Agents._Second.Generation 14
Antihypoc.A. Antihypocalcemic_Agents 13
Antilnf.Ur. Anti.Infective_Agents._Urinary 14
CNS.Stim. Central_Nervous_System_Stimulants 14
Neuroprot.A. Neuroprotective_Agents 13
NSAIAs Nonsteroidal_Anti.infl _Agents_.NSAIAs. 14
Seroton.Inh. Serotonin_Uptake_Inhibitors 13
Ang.Enz.In. Angiotensin.converting_Enzyme_Inhibitors 13

While for some therapeutic categories such as “Peni-
cillins” or “Cephalosporins” we can obtain high AUC
values just with W (see the first two rows of the
heatmap in Fig.Fig. 6 (a)), for other categories the in-
tegration of drug-target and drug-chemicals interaction
information is of paramount importance to improve
performances: consider, for instance, “Anticonvulsants”

or “Anti-HIV Agents”. This is not surprising since Peni-
cillins are highly characterized from a chemical stand-
point and hence can be effectively predicted by using the
similarities between thier chemical structures, while if
we consider other chemically more heteregeneous drugs
such as Anti-HIV Agents, drug-target relationships play
a central role to characterize this therapeutic category.

This is also more evident whe we consider the pre-
cision (Fig. 7). Several therapeutic categories need the
1 NetPro projection and integration to achieve an accept-
able precision: for instance “Antiparkinson_Agents” and
“Antidyskinetics” substantially increments their P40R
values when the fully integrated W3 pharmacological
network, by exploiting drug-drug relationships induced
by common genetics and/or toxicogenomics disease-
association profiles. Another case is represented by
“Anti.Ulcer_Agents”, for which Tanimoto coefficients are
ineffective (Fig. 7, (a), third row of the heatmap), while
with W, and W3 integrated pharmacological spaces
we can obtain a very significant P40R increment. Note
that for most therapeutic classes we achive a substantial
increase of P40R when we move from W to W, while
this is not always true when we move from W to Wj:
consider, for instance, “Diuretics” or “Antimetabolities”.

For most classes Spyny and Suy achieve the
best results, but in terms of P40R for some
specific classes, RWR (e.g. with “Anti-HIV Agents”
or “Cyclooxygenase_Inhibitors”) and RW 1-step
(“Dopamine_Antagonists” and  “Sympatholytics”)
outperform kernelized score functions. We have not a
clear explanation of this fact, but at least with respect to
RW this could be the effect of the choice of the number
of steps: indeed with both 1-step random walk kernel
Sknyny and Say achieves significantly better results
(recall that in Fig. 7 we reported results of 2 steps Siyn
and 3 steps Say). Score functions based on random
walk kernels obtain high AUC values for most classes,
but also with respect to the worst therapeutic categories
(in terms of achieved AUC) we can obtain a reasonable
ranking of the drugs (Tab. 4). These results show that
for such classes we could obtain better results by
integrative further informative sources of data projected
into homogeneous pharmacological spaces through
1 NetPro.

4.5 Drug Ranking of Therapeutic Categories Char-
acterized by Low Cardinality

Even if in our experiments we chose DrugBank thera-
peutic categories (TC) with more than 15 drugs in order
to obtain more robust and reliable performance measures
of the proposed methods, in this section we evaluate the
performance of ¢NetPro and kernelized score functions
using relatively small DrugBank therapeutic categories.
More precisely, from the 131 therapeutic classes having
from 5 to 15 drugs we randomly selected 10 TCs for
each of the 5 to 8, 9 to 12 and 13 to 15 subgroups. The
resulting TCs are listed in Tab. 5.
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TABLE 6
Average AUC and precision at 40% recall across the DrugBank categories with less than 15 drugs.

Methods AUC P40R
Wl W2 W3 Wl W2 W3

Sav 1 step 0.6924 | 0.8635 | 0.8984 || 0.2882 | 0.4217 | 0.5082
Sav 10 steps 0.6455 | 0.8650 | 0.9153 || 0.2710 | 0.4048 | 0.4952
Sknn 1 step k=9 0.6924 | 0.8635 | 0.8983 || 0.2878 | 0.4204 | 0.5082
Sknn 10 steps k=9 | 0.6447 | 0.8640 | 0.9115 || 0.2920 | 0.4143 | 0.4958
Snn 1 step 0.6916 | 0.8614 | 0.8959 || 0.2436 | 0.3399 | 0.4079
Snn 10 steps 0.6447 | 0.8606 | 0.9116 || 0.2522 | 0.3741 | 0.4319
RW 1 step 0.6840 | 0.8620 | 0.9007 || 0.2606 | 0.3707 | 0.4818
RW 10 steps 0.6130 | 0.8206 | 0.8128 || 0.1605 | 0.2440 | 0.2840
RWR6=0.3 0.6394 | 0.8601 | 0.9110 || 0.2360 | 0.3869 | 0.4915
GBA 0.6853 | 0.8598 | 0.8909 || 0.2146 | 0.3208 | 0.4105
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Fig. 8. TC with less than 15 drugs: per class AUC scores compared across methods. Yellow corresponds to the lowest
AUC values, while red to the highest AUC values. (a) W, (b) W, and (c) W3 pharmacological networks.

As expected, average AUC and P40R results across
TCs (Tab. 6) register a certain decrement with respect
to the larger TCs analyzed in Section 4.2 (Tab. 2), more
significant in terms of P40R, while the average AUC
shows a less marked decrease. Tab. 6 shows that also
with relatively small TCs the t¢¥NetPro projection and
integration of pharmacological space works nicely, lead-
ing to a significant increment of both AUC and P40R
independently of the drug ranking method used. A
visual clue of this fact is offered also by Fig. 8 and 9 that
show respectively the per-class AUC and P40R results
achieved by the ranking methods with W, W, and
W3 pharmacological spaces. Note however that P40R
values are more scattered, revealing a significant decay
in performance with respect to results realtive to the TCs
with more than 15 drugs (Fig. 7 and 9).

Also with the “small” TCs S,y and Sy y N achieve the
best average results, but also RWR and RW 1 step obtain
competitive results (Tab. 6). Interestingly enough, Sav
and Sy with 10 steps random walk kernel register the
best AUC results, while this is not true for the classic RW
10 steps, as just observed with the “large” TCs analyzed
in Section 4.3.

But the more significant fact with “small” TCs is that
the integration introduces a more consistent advance-
ment in both AUC and P40R: all the methods on the
average approximately improve the AUC of about 20
percent points and double the precision passing from
Wi to W3 (Tab. 6), while with “large” TCs the im-
provement is about 10 percent in terms of AUC and
the P40R is augmented of at most one half by passing
from W, to W3 (Tab. 2). This fact is evident also
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Fig. 9. TC with less than 15 drugs: per class precision at 40% recall scores compared across methods. Yellow corre-
sponds to the lowest precision values, while red to the highest values. (a) W, (b) W, and (c) W3 pharmacological

networks.

analyzing the per-class results (Fig. 8 and 9): some
TCs such as “Angiotensin_II_Receptor_Antagonists” ap-
proximately double their average AUC by integrating
more sources of data through 1 NetPro, independently
of the ranking method used, and others, such as “Anti-
cholesteremic_Agents” or “Antitubercular_Agents” pass
from P40R values close to 0 with W to values close to
0.9 — 1.0 with W3, with all the ranking methods or at
least with the most performing Say, Spnyn or RWR.

4.6 Preliminary Analysis of Top Ranked False Posi-
tives

Cross-validated average results across classes show that
our proposed methods are able to recover therapeutic
classes of drugs. A thorough analysis of the results
relative to each therapeutic category is out of the scope
of this investigation, but in order to show the potential
of the proposed method we report the analysis of the top
ranked false positives predicted in three drug categories.
All the ranking results show an AUC increment due
to the progressive networks integration, and we chose
among them three of the classes with the largest AUC
improvement. “Antidyskinetics” drugs are used in the
treatment of motor disorders. In this ranking task we
obtained 0.730, 0.887 and 0.923 average AUC using the
Wi, Wy and W3 networks respectively. The first top
ranked negative (L-Tryptophan, DrugBank id: DB00150)
was reported to be effective in preventing levodopa-
induced motor complications in the treatment of patients
affected by Parkinson disease [41], and hence could be

associated to the “Antidyskinetics” category. In the rank-
ing task associated with the “Anti HIV Agents” category
we achieved respectively 0.753, 0.900 and 0.943 AUC
results using our progressively integrated networks. The
first top ranked negative was Darunavir (DB01264) and,
according to the associated DrugBank entry, it is indi-
cated in the treatment of HIV, but not annotated as “Anti
HIV Agents”, probably since just annotated as “HIV
Protease Inhibitors”. The top ranked false positive in
the task associated with the “GABA Modulators” (AUC
0.941, 0.972 and 0.995) is Adinazolam (DB00546). This
drug, and the four top ranked false positives in this
task are benzodiazepines, a class of substances known
to modulate the effect of GABA [42], [43].

5 CONCLUSIONS AND DEVELOPMENTS

The integration of multiple sources of information coded
as heterogeneous bipartite networks into projected ho-
mogenous pharmacological spaces plays a key role to
significantly improve the drug ranking results in Drug-
Bank therapeutic categories. By constructing a network
through Tanimoto coefficients computed from each pair
of drug chemical fingerprints, we can obtain a large
coverage initial pharmacological network including all
the FDA approved drugs under study. By adding a novel
pharmacological network constructed from known drug-
target relationships through our proposed ¢NetPro pro-
cedure, we enrich our original large coverage network
with highly informative novel edges, as witnessed by
the very significant improvement in terms of both AUC
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and precision at fixed recall achieved by each compared
drug ranking method when we use W instead of W
pharmacological network. Moreover, by adding further
information, such as drug-drug relationships induced
by common genetics and/or toxicogenomics disease-
association profiles or from target chemicals belonging
to the same pathway (W3) network), we can further
obtain novel relationships that can signicantly improve
performances for specific therapeutic categories (Fig. 6
and 7), but also overall AUC and P40R results (Tab. 2).

Our proposed kernelized scores Say and Sinyn, by
introducing both local and global learning strategies for
the semi-supervised ranking of drugs, achieve signifi-
cantly better results than the other compared methods
(Tab. 2), but also RWR and RW 1-step obtain sometimes
comparable results (i.e. with the integrated Wy pharma-
cological network), showing that the construction and
integration of informative pharmacological spaces is at
least relevant as the design and the choice of proper label
ranking algorithms.

The analysis of the performances of the score functions
embedding random walk kernels with different numbers
of steps (Section 4.3), shows that also indirect similarities
mediated through relatively long paths across the phar-
macolgical space can be relevant to correctly rank drugs
with respect to DrugBank TCs. These results suggest
that by tuning the number of steps for each TC or by
adopting ensemble learning strategies [44] to include
and combine random walk kernels with different num-
ber of steps may significantly improve the performances
of the kerenelized score functions.

Results averaged across classes show that our pro-
posed approach is able to correctly rank known drugs
with respect to DrugBank TCs; moreover the analysis
of the the results for each class reveals that for several
TCs we can obtain AUC and P40R values that assure
a highly reliable ranking and potential repositioning of
drugs. Indeed a preliminary analysis of the top-ranked
false positives shows that our proposed methods can
discover potential drug candidates for novel therapeutic
indications.

We would like also to outline that kernelized score
ranking methods could be applied to significantly larger
drug networks, due to their low computational com-
plexity and scalability. Indeed the full ranking of drugs
with 5 fold CV repeated 10 times with respect to the
81 considered TCs requires no more than 10 seconds
on an Intel i7-860 2.80 GHz processor with 4 Gbytes of
RAM. Hence, considering that in our experiments we
analyzed about a thousand of FDA-approved drugs, we
hypothesize that the same approach could be applied
to thousands of investigational compounds, thus finding
initial therapeutic indications for unknown drugs.

Moreover, we could apply the same network pro-
jection and integration approach to enrich the phar-
macological space with new information coming, e.g.,
from annotated side-effects (as the one stored in public
databases such as SIDER [45]), or from manually curated

pathways databases such as Reactome [46], or from large
collections of gene expression signatures as the ones
included in the Connectivity Map public repository [7],
or also from data obtained through Next Generation Se-
quencing techniques, one of the most promising biotech-
nologies for drug discovery and development [47].

Another possible development could consists in exper-
imenting with real-valued network projections, to take
into account the weights eventually associated to the
edges of the bipartite network, or to expicitly consider
multiple nodes of the “bottom” set shared by the same
pair of vertices of the “top” set of nodes.
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