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Abstract

Motivation: Automated protein function prediction is a complex multi-class, multi-label, structured
classification problem in which protein functions are organized in a controlled vocabulary, according to
the Gene Ontology (GO). “Hierarchy-unaware” classifiers, also known as “flat” methods, predict GO terms
without exploiting the inherent structure of the ontology, potentially violating the True-Path-Rule (TPR) that
governs the GO, while “hierarchy-aware” approaches, even if they obey the TPR, do not always show clear
improvements with respect to flat methods, or do not scale well when applied to the full GO.
Results: To overcome these limitations, we propose Hierarchical Ensemble Methods for Directed Acyclic
Graphs (HEMDAG), a family of highly modular hierarchical ensembles of classifiers, able to build upon
any flat method and to provide “TPR-safe” predictions, by leveraging a combination of isotonic regression
and TPR learning strategies. Extensive experiments on synthetic and real data across several organisms
firstly show that HEMDAG can be used as a general tool to improve the predictions of flat classifiers, and
secondly that HEMDAG is competitive versus state-of-the-art hierarchy-aware learning methods proposed
in the last CAFA international challenges.
Availability: Fully-tested R code freely available at https://anaconda.org/bioconda/r-hemdag.
Tutorial and documentation at https://hemdag.readthedocs.io
Contact: marco.notaro@unimi.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The Automated Protein Function Prediction (AFP) is a central and
challenging problem in Computational Biology (Zhou et al., 2019).
AFP can be modeled as a set of related binary classification or ranking
tasks where each protein may be associated with multiple functional
classes structured according to a predefined hierarchy, i.e. the Gene
Ontology (Gene Ontology (GO) Consortium, 2018). Despite GO terms are
interconnected according to a predefined hierarchy (i.e. a directed acyclic

graph), most computational approaches proposed in literature, ranging
from sequence-based methods (Juncker et al., 2009; Törönen et al., 2018)
to network-based methods (Sharan et al., 2007; Re et al., 2012; Frasca
et al., 2020), learn functional terms independently each of the other,
without considering the information coded in the hierarchical constraints,
typically yielding to sub-optimal solutions. The GO is governed by the
True-Path-Rule (also known as annotation propagation rule), which states
that if a gene product is associated with a given functional term, it must
be associated with all its parent terms and recursively with its ancestor
terms. On the contrary, if a gene product is not associated with an
ontology term, it cannot be associated with any of its offspring terms.

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Theoretical studies (Armano, 2015) as well as applications in several
domains (Silla and Freitas, 2011), showed the effectiveness of hierarchical
approaches (Valentini, 2011; Cesa-Bianchi et al., 2012; Kocev et al., 2013).
Furthermore, the results of three international challenges for the Critical
Assessment of Functional Annotation, (CAFA (Radivojac et al., 2013),
CAFA2 (Jiang et al., 2016) and CAFA3 (Zhou et al., 2019)) emphasized
the value of “hierarchy-aware” methods for GO term prediction. Indeed,
in the last decade several structured output approaches have been proposed
in literature, including methods based on genetic algorithms (Cerri et al.,
2019), multi-label learning (Wu et al., 2014), neural (Cerri et al.,
2015; Kulmanov et al., 2017) or deep neural networks (Kulmanov and
Hoehndorf, 2019), active learning (Nakano et al., 2020), and learning to
rank framework (Liu et al., 2020).

Structured output prediction methods can be schematically classified
in two broad categories. The first one exploits joint input and output
kernelization techniques, based on large margin methods for structured and
interdependent output variables (Lampert and Blaschko, 2009; Sokolov
and Ben-Hur, 2010; Kahanda et al., 2015). The second one instead is
based on ensembles of learning machines able to exploit the hierarchical
relationship among classes (Guan et al., 2008; Yu et al., 2015; Cerri
et al., 2016; Wang et al., 2018). For a broader overview on hierarchical
classification methods we refer the reader to Valentini (2014) and
Kulmanov et al. (2020). Although these two categories of structured output
approaches have been successfully applied to bio-ontologies, hierarchical
ensemble methods (HEMs), due to their high-modularity, scale better
on large ontologies and dataset than kernel-based structured output
approaches. Nevertheless, several studies showed that it is often hard to
improve flat predictions using hierarchical ensemble methods (Obozinski
et al., 2008; Wang et al., 2018).

To overcome these limitations we propose novel hierarchical ensemble
methods that can improve flat learning method by correcting and making
their flat predictions consistent, and that are competitive with state-of-the-
art structured output methods. More precisely, the main contributions of
this work are the following: a) novel hierarchical ensemble methods (ISO-
TPR) based on the integration of the True-Path-Rule algorithm and isotonic
regression, to find the “TPR-safe” closest solution (in a least square sense)
to the flat predictions, assuring at the same time an improved sensitivity;
b) a family of Hierarchical Ensemble Methods for Directed Acyclic
Graphs (HEMDAG) that integrates ISO-TPR with our previously proposed
approaches for the hierarchical prediction of bio-ontologies (Notaro et al.,
2017, 2019); c) extensive full GO ontology experiments on different
organisms showing that HEMDAG can be used to systematically improve
flat predictions; d) a systematic experimental comparison of the behavior
of all the 20 HEMDAG methods on different artificial data sets scenarios,
so as to estimate the probability they improve flat performance in
different settings; e) time-lapse experiments to compare HEMDAG with
state-of-the-art (SOTA) hierarchy-aware structured output methods; f) a
fully-tested software library implementing HEMDAG methods, available
at both Bioconda and CRAN repositories, alongside a comprehensive
step-by-step tutorial showing how to use HEMDAG to predict GO terms
(https://hemdag.readthedocs.io).

2 Methods
The highly modular framework of ISO-TPR is based on a four-step
learning strategy (Fig. 1). In the first step, a learning algorithm (LA,
represented by ellipses in Fig. 1a) is applied to train a set of base classifiers
(circles) associated with a specific GO term (denoted by C1, . . . , Cn),
using data sets D1, . . . , Dn. In the second step, the base classifiers are
hierarchically combined according to the GO topology (Fig. 1b). Then, for
each protein, the “positive” predictions of the base learners are recursively

propagated from the leaf nodes toward the root (Fig. 1c). Finally the
isotonic regression algorithm is applied to assure that the predicted
GO terms are consistent, i.e. obey the True-Path-Rule and are close to
the predictions provided in the bottom-up step (Fig. 1d). More precisely
ISO-TPR integrates an approximate version of the isotonic regression
algorithm, i.e. the Generalized Pool-Adjacent-Violators (GPAV), having
low computational complexity and high accuracy (Burdakov et al., 2006),
with the True-Path-Rule learning strategy (Valentini, 2011; Notaro et al.,
2017), to improve the overall sensitivity of the ensemble and to assure
at the same time consistent predictions, i.e. predictions that obey the
True-Path-Rule.

2.1 Basic notations and definitions

Let G =< V,E > be a DAG with vertices V = {1, 2, . . . , |V |} and
edges e = (i, j) ∈ E ⊂ V × V . In our setting, nodes V represent
the terms of the ontology and a directed edge (i, j) ∈ E the hierarchical
relationship between i and j: i is the parent term and j is the child term.
The set of children of node i is denoted by child(i), the set of its parents
by par(i), the set of its ancestors by anc(i) and the set of its descendants
by desc(i). φ(i) and ∆(i) represent GO sets of terms annotated by the
ensemble, that are respectively children or descendants of a node/GO term
i. Given the gene product input space X and the multi-labeling space
Y = [0, 1]|V |, a “flat multi-label scoring” predictor f : X → Y provides
a score vector f(x) = ŷ(x) =< ŷ

(x)
1 , ŷ

(x)
2 , . . . , ŷ

(x)
|V | > for a given

protein x ∈ X , such that ŷ(x)
i ∈ [0, 1] represents the likelihood that x

belongs to the term i ∈ V . To simplify the notation, when clear from the
context, ŷ(x) is simply denoted by ŷ. We say that the multi-label scoring
y is consistent if it obeys the True-Path-Rule:

y is consistent ⇐⇒ ∀i, j ∈ V, i ∈ par(j)⇒ yi ≥ yj . (1)

As a consequence of equation (1), in order to have consistent predictions,
if a protein is predicted to belong to a given term i then the same
protein must be predicted to belong to all the ancestor terms of i.
HEMDAG algorithms compute a function g(x) : Y → Y which
transforms a flat multi-label prediction ŷ into a consistent one g(ŷ).
Supplementary Fig. S1 shows an example of inconsistent flat scores and
their HEMDAG correction for the mouse protein C-C chemokine receptor
type 6 (ENSMUSP00000095029), whose high expression levels are
associated with colon cancer metastasis (Kapur et al., 2016).

2.2 Flat learning of the ontology terms

The first step of ISO-TPR (Fig. 1a) consists in independently learning
a flat predictor fi : X → [0, 1] for every term i ∈ V . The output of
this step is thereby a flat multi-label predictor f : X → Y, such
that f(x) = ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, with fi(x) = ŷi for each
i ∈ {1, . . . , |V |}. fi can be any supervised or semi-supervised base
predictor able to provide probability scores or binary predictions. A real
score ŷi ∈ [0, 1] is interpreted as the likelihood that a gene product is
annotated with the GO term i, whereas a binary prediction ŷi ∈ {0, 1} as
an association with the term i. The flat predictors f1, f2, . . . , f|V | are
finally hierarchically organized according to the GO ontology (Fig. 1b).

2.3 The ISOtonic True-Path-Rule algorithm and the
HEMDAG family of hierarchical ensemble algorithms

In the third and fourth steps of the algorithm (Fig. 1c and d), ISO-
TPR integrates the TPR-DAG (Notaro et al., 2017) and GPAV (Burdakov
et al., 2006) algorithms to find a solution that: a) obey the True-Path-Rule;
b) is the closest to the bottom-up modified flat predictions in a least square
sense; c) improves the overall sensitivity of the hierarchical ensemble.
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Fig. 1. High level picture of ISO-TPR methods (a-d) and a representation of the ISO-TPR computation on a specific toy example (e). (a) Training of the base classifier: each classifier
is trained using a specific learning algorithm on each term of the GO; (b) Hierarchical combination of the base classifiers: base classifiers are hierarchically organized according to the
GO topology; (c) Bottom-up step: only the nodes considered to be “positive” are bottom-up propagated (circles with yellow rim); bottom-up yellow arrows represent positive predictions
up-propagated and combined with those of their parents. This step boosts the sensitivity of the predictions, but it does not guarantee that they are consistent with the hierarchy. (d) Consistency
step: it provides “TPR-safe” predictions. Circles with purple rim represent nodes whose predictions are corrected according to the hierarchy. (e) Computation of ISO-TPR on a specific
example. “FLAT STEP” panel: nodes and their scores represent respectively GO terms and their flat predictions. The different colors represent the levels, defined according to the maximum
distance from the root node. “BOTTOM-UP STEP” panel: flat scores are modified by recursively using only “positive” predictions from the leaves to the root through a per-level visit of
the DAG. The “Example” box shows a close-up view of how the correction of node F is performed, i.e. by averaging the flat score of node F with those of its “positive” children (nodes
J and H) – selected through the threshold-free strategy (see Section 2.3.1). “CONSISTENCY STEP” panel: in the last step the GPAV algorithm is applied to guarantee that the ensemble
predictions satisfy the True-Path-Rule. The graph nodes in this panel are colored according to the “absorption” operation of the GPAV algorithm (Burdakov et al., 2006).

2.3.1 The True-Path-Rule algorithm
In the bottom-up step of the algorithm, TPR-DAG propagates “positive”
predictions from the leaves toward the root of the GO-DAG, by recursively
applying the following rule according to a “per-level” visit of the
DAG starting from the deepest nodes:

ȳi :=
1

1 + |φi|
(ŷi +

∑
j∈φi

ȳj) (2)

where φi are “positive” children of i, i.e. the children nodes annotated
as positive by the ensemble, ŷi is the flat prediction, and ȳi the updated
prediction of the parent node. This step guarantees an improvement of the
sensitivity of the ensemble (Notaro et al., 2017). According to the definition
of positive children, different variants of ISO-TPR are available:

Threshold Free (TF): positive children are those that can increment the
parent score, thus φi := {j ∈ child(i)|ȳj > ŷi}. Indeed, since the
bottom-up step is recursive, children scores are already “consensus” of
predictions coming from lower levels.

Fixed Threshold (FT): a unique threshold t̄ is a-priori set for all nodes to
determine the set of positives φi := {j ∈ child(i)|ȳj > t̄}, for every

i ∈ V . For instance, if the flat predictions are probabilities, it could be
meaningful to a-priori set t̄ = 0.5;

Learned Threshold (LT): a threshold is selected to maximize some
performance metricM estimated on the training data, e.g. the F -measure
or the Area Under the Precision-Recall curve (AUPRC). Namely, the
threshold is selected to maximize the measure M(j, t) on the training
data for the term j with respect to the threshold t, thus resulting in
φi := {j ∈ child(i)|ȳj > t∗j , t

∗
j = arg maxtM(j, t)}. Internal

cross-validation is used to select t∗j within a set of possible thresholds
t ∈ (0, 1).

As an example, in Fig. 1e we show a pictorial example of the action mode
of the threshold-free variant of the ISO-TPR algorithm. We also propose
a weighted version algorithm (ISOtprW), where a weight w ∈ [0, 1] is
introduced to balance the contribution of the parent node i and its “positive”
children:

ȳi := wŷi +
(1− w)

|φi|
∑
j∈φi

ȳj (3)

Ifw = 1, no weight is attributed to the children and the ISO-TPR reduces
to the GPAV algorithm. If w = 0, only the predictors associated to the
positive children nodes “vote” to predict node i.
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2.3.2 The Generalized Pool Adjacent Violators (GPAV) algorithm
GPAV is based on the Isotonic Regression (IR) algorithm proposed
by Barlow and Brunk (1972). The IR problem involves finding a weighted
least-squares fit ȳ ∈ Rn to a vector ŷ ∈ Rn, with weight vectorw ∈ Rn,
subject to a set of given constraints ȳi ≥ ȳj ∀(i, j) ∈ E. Such constraints
define a partial or a total order and in our context are encoded by the
DAGG(V,E). In particular, any pair (i, j) ∈ E represents the constraint
ȳi ≥ ȳj . Each node is associated with an observed value and each edge
is associated with a monotonicity relationship. Formally, given a vector of
observed values ŷ ∈ Rn, a strictly positive vector of weights w ∈ Rn

and a DAG G(V,E), GPAV finds the vector of fitted values ȳ ∈ Rn that
solves the following convex quadratic program:

min
ȳ

∑
i∈V

wi(ȳi − ŷi)2

s.t. ȳi ≥ ȳj ∀(i, j) ∈ E
(4)

In this sense the vector ȳ is the “constraints-satisfying” solution closest
to ŷ in a least square sense. It is easy to solve the problem (4) when the
constraints are in the simple form: ȳ1 ≤ ȳ2 ≤ . . . ȳ|V |, i.e., when
the associated graph G(V,E) has a linear structure. For this special
case of complete order, the most efficient and widely used algorithm is
the Pool-Adjacent-Violators algorithm (PAV) (Ayer et al., 1955; Barlow,
1972), whose computational complexity is O(|V |) (Grotzinger and
Witzgall, 1984). On the contrary, the optimization-based algorithms to
solve the general IR problem (4) can be used only when the number
of observations is quite small (up to few hundred), because they are
characterized by a high computational complexity O(|V |4) (Maxwell
and Muckstadt, 1985). Nevertheless, Burdakov and coworkers proposed
an approximate algorithm, named Generalized Pool-Adjacent-Violators
(GPAV), that achieves both low computational complexity (O(|V |2))
and high accuracy (Burdakov et al., 2006). By combining GPAV and
ISO-TPR algorithms we obtain ISO-TPR: its pseudocode is available
in Supplementary Fig. S2, while Supplementary Section S2 provides an
analysis of the computational complexity of the algorithm.

2.3.3 The ISO-DESCENS algorithm
Valentini (2011) showed that in tree-based hierarchies the contribution of
the descendants of a given node decays exponentially with their distance
from the node itself. It is straightforward to see that this property also
holds for DAG structured taxonomies. To overcome this limitation, which
penalizes the predictions of the most specific terms of the GO, we designed
the ISO-DESCENS algorithm:

ȳi :=
1

1 + |∆i|
(ŷi +

∑
j∈∆i

ȳj) (5)

where ∆i is the set of “positive” descendants of node i. The main feature
of this strategy resides in emphasizing the contribution of the positive
descendants of each node, to weigh more the information embedded in the
leaf nodes, that are the most specific and informative from a biological
standpoint. The weighted ISO-DESCENS variant can be designed by
simply replacing φi with ∆i in eq. (3). In addition, we designed a novel
ISO-DESCENS variant, named ISOdescensTAU, by adding a weight τ ∈
[0, 1] to modulate the contribution of positive children and descendants
(excluding children):

ȳi :=
τ

1 + |φi|
(ŷi +

∑
j∈φi

ȳj) +
1− τ

1 + |δi|
(ŷi +

∑
j∈δi

ȳj) (6)

where δi = ∆i \φi are the descendants of iwithout its children. If τ = 1

we consider only the contribution of the “positive” children of i, if τ = 0

only the descendants that are not children contribute to the score, while
for intermediate values of τ we can balance the contribution of φi and δi
positive nodes.

2.3.4 The family of HEMDAG algorithms
Table 1 summarizes the hierarchical ensemble methods implemented in the
HEMDAG library: those highlighted in bold represent novel algorithms
presented for the first time in this work, while the others are previously
proposed algorithms. These methods may differ in the parametric or

Table 1. HEMDAG family of hierarchical ensemble algorithms. In bold are
highlighted the novel algorithms presented for the first time in this manuscript.
The acronyms TF (Threshold-Free), T (Threshold, that includes both Fixed
Threshold – FT and learned Threshold – LT strategies), W (Weight) and WT
(Weight-Threshold) at the end of the HEMs names denote the bottom-up strategy
by which the corresponding algorithm chooses the “positive” nodes. “None” in
the column “Bottom-up step”, points out that HTD and GPAV algorithms include
only the consistency step.

HEMs Subfamily Bottom-up step Consistency step Type
HTD HTD

None
HTD

Parameter-free

GPAV GPAV GPAV
tprTF TPR-DAG

Children
HTD

ISOtprTF ISO-TPR GPAV
descensTF DESCENS

Descendants
HTD

ISOdescensTF ISO-DESCENS GPAV
tprT

TPR-DAG

Children

HTD

Parametric

tprW
tprWT
ISOtprT

ISO-TPR GPAVISOtprW
ISOtprWT
descensT

DESCENS

Descendants

HTD
descensW
descensWT
descensTAU
ISOdescensT

ISO-DESCENS GPAV
ISOdescensW
ISOdescensWT
ISOdescensTAU

parametric-free strategy chosen for the selection of the “positive” children
or descendant nodes in the bottom-up step, and for the algorithm adopted
in the consistency step (ISO-TPR or HTD). Two ensemble methods only
execute the consistency step, 14 are parametric and 6 are parameter-
free. Among the parametric variants, 6 boost the sensitivity of the
flat predictions by propagating the children predictions, whereas the
remaining 8 take directly into account also the descendant predictions.
Each HEMDAG algorithm is detailed in Supplementary Section S3.

3 Results and discussion
To assess the soundness and robustness of HEMDAG methods, three
different sets of experiments were performed. The goal of the first set
(Section 3.1) is to empirically show that HEMDAG can be used to
systematically improve flat predictions. We only selected parameter-free
algorithms to avoid that the improvement over flat methods was simply
due to the hyper-parameters tuning. In Section 3.2, a comparison and a
characterization of the different HEMDAG methods is performed using
synthetic data, whereas the last set of experiments (Section 3.3) aims at
comparing the top performing algorithms resulting from Section 3.2 with
SOTA structured output methods (Zhou et al., 2019).

3.1 HEMDAG boosts predictions of flat classifiers

We compared the performance of 11 flat ML methods (Decision Tree,
Generalized Linear Models, Linear Discriminant Analysis, Logit Boost,
Multi Layer Perceptron, Naive Bayes, Random Forest, Support Vector
Machine, Bagged Ensemble of Decision Trees, Extreme Gradient
Boosting) with HEMDAG threshold free counterparts, by using the same
methods as base learners.
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HUMAN MOUSE

Fig. 2. Synoptic comparison of hierarchical ensemble methods versus flat approaches across GO ontologies and organisms. Heatmaps compare a hierarchical ensemble method (row)
against a flat classifier (column) separately for each ontology and organism using the AUPRCmetric. For each species, the first heatmap shows the comparison for each pair hierarchical

ensemble-flat classifier. The value of each cell is computed as follows: HeatmapCell[i, j] =
AUPRChieri

−AUPRCflatj
max(AUPRChieri

,AUPRCflatj
)
, where AUPRChieri

and AUPRCflatj
are the

average AUPRC values of the ith hierarchical ensemble method and of the jth flat classifier. Green cells denote better average results across GO terms for HEMDAG and magenta for flat
classifiers. The second heatmap shows whether the performance difference of each pair of flat and HEMDAG classifiers is statistically significant according to a two-sided paired Wilcoxon
rank sum test (α = 10−4). Blue cells indicate that a HEMDAG algorithm performs significantly better than a flat classifier, red cells that flat methods prevail, while gold cells no statistically
significant difference observed.

We predict protein function of several animal species, including both
invertebrates and vertebrates: C. elegans (CAEEL), G. Gallus (CHICK), D.
rerio (DANRE), D. melanogaster (DROME), H. sapiens (HUMAN) and
M. musculus (MOUSE), using GO annotations from the Gene Ontology
Annotation (GOA) database (December 2017 release).

Experimental set-up. We used the rows of the STRING weighted
adjacency matrix (Szklarczyk et al., 2015) as features to train the learning

machines. Our experiments involved more than 75K annotated proteins
and about 7K unique GO terms. The data preparation pipeline is detailed
in Supplementary Section S4. The generalization capabilities of the
compared methods were assessed through a 5-fold cross-validation. Folds
were stratified, i.e. positive instances were equally distributed among
folds. To train a given model, we chose as positives all the proteins
annotated with a GO term, whereas we retained as negatives all the
remaining proteins not annotated with that term. To reduce the high
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dimension of the feature space, we applied univariate feature selection
methods. The source code adopted to build the datasets is available
at https://github.com/AnacletoLAB/godata-pipe. Full
details on the data and experimental set-up are available in Supplementary
Section S6.4.

Experimental results By observing the heatmaps in Fig. 2 across
organisms and GO domains, we can note that all the hierarchical methods
(except for the HTD algorithm) significantly outperform flat predictors
independently of the choice of the base learner, showing that hierarchical
ensembles are able to enhance their flat counterparts. Notably, the
improvement occurs across the three GO domains and the six considered
organisms, except for CHICK where the flat and hierarchical approaches
tie in the majority of cases. This is probably due to the scarcity of
the available data (see Supplementary Table S8). Indeed, when flat
classifiers provide random or very noisy predictions, we verified that only
in about half cases the hierarchical correction is able to improve the flat
predictions (see Section 3.2). Detailed experimental results that show the
improvements achieved by HEMDAG with respect to flat methods for each
organism and ontology domain are available in Supplementary Section S6.

We also performed a random search of model parameters (Bergstra and
Bengio, 2012) to evaluate whether model selection can have an impact
on the boosted performance of HEMDAG vs flat classifiers. To reduce
the computational burden of the model selection implemented through
a double (external and internal) cross-validation setting, we limited the
experiments to two model organisms (C. elegans and D. rerio). Both the
performance of flat classifiers and HEMDAG are slightly improved, and
our proposed hierarchical ensembles confirmed their boosted predictions
with respect to flat classifiers also when model selection is performed (see
Supplementary Section S6.8).

Furthermore, we performed tests with the same two model organisms
(C. elegans and D. rerio) by removing IPI annotations and functional
interactions to assess the impact of a possible circularity in the data. Results
confirmed the ability of HEMDAG of improving flat predictions, while
overall prediction performance only decreased slightly with respect to
the experimental setting enriched with IPI annotations. (Supplementary
Section S6.9).

3.2 Characterization of the HEMDAG family of hierarchical
ensemble methods

This section analyzes the behavior of all the HEMDAG methods to estimate
their probability of improving the performance of flat predictors, using
artificially generated data and the DAG scheme of the MF ontology. To
this end and in order not to depend on a specific organism, we randomly
generated GO annotations obeying the TPR for a set of proteins, and
then 1000 repetitions of flat predictions, considering different levels
of inconsistency with respect to the correct GO annotations. Finally,
we computed how many times HEMDAG improves inconsistent flat
predictions, i.e. we estimated the probabilityp that HEMDAG can improve
flat predictions. Supplementary section S7 provides the details of the
experimental design.

Generating random flat predictions. LetL be the matrix of the generated
TPR-safe GO annotations and M the matrix of the randomly generated
flat predictions (rows represent proteins and columns GO terms), then
probability p was estimated according to four different experimental
setups:

Unif. The matrix M is generated according to a continuous uniform
distribution in [0, 1];

Leaves. M is initially generated to fully respect the TPR rule, and having
AUPRC = 1 for all GO terms; then, an inconsistency for each protein

i is introduced at leaf level by uniformly picking up a leaf j (without
replacement) and swapping the corresponding score with that of one of its
parents q ∈ par(j) (that is by swapping Mij and Miq);

Root. The same as Leaves experiment, except for the inconsistency, which
is placed at root level: for each protein i, a child j of the root r is uniformly
selected, and its score Mij exchanged with the parent one Mir ;

Mixed. After generating TPR consistent matrices M as in Leaves and
Root experiments, each entry Mij was mixed with a uniform noise in
[0, s], with s = 0.2, 0.4, 0.6, 0.8, 1, to simulate realistic scenarios with
both poor (s = 1) and good (s = 0.1) quality predictions. The levels of
noise injected in the 1000 repetitions of M have been evenly partitioned
among the different values of s.

Table 2 shows the 95% confidence intervals of the estimated p values
for each HEMDAG method. Model selection has been performed through
internal cross-validation and grid search over the hyperparameters of the
HEMDAG methods. Supplementary Section S7.2 provides details about
the tuning of the hyperparameters and the experimental set-up.

Table 2. Confidence interval for the probability p that the ensemble
algorithms of the HEMDAG family improve flat predictions. Only the best
HEMDAG performing methods are reported. Full results are available in
Supplementary Table S11

Method Unif Leaves Root Mixed

GPAV [0.469, 0.531] [0.997, 1.000] [0.997, 1.000] [0.679, 0.736]
ISOtprTF [0.462, 0.524] [0.997, 1.000] [0.997, 1.000] [0.681, 0.737]
ISOdescensTF [0.465, 0.527] [0.997, 1.000] [0.997, 1.000] [0.681, 0.737]
ISOtprW [0.488, 0.550] [0.997, 1.000] [0.997, 1.000] [0.681, 0.737]
ISOdescensW [0.481, 0.543] [0.997, 1.000] [0.997, 1.000] [0.681, 0.737]
ISOdescensTAU [0.476, 0.538] [0.997, 1.000] [0.997, 1.000] [0.683, 0.739]

Analysis of results. The best performing HEMDAG methods, able to
outperform flat methods in different experimental conditions, belong to
the ISO-TPR subfamily newly proposed in this work (Table 2). Indeed
ISO-TPR finds the “TPR-safe” solution closest (in a least square sense)
to the “sensitivity enhanced” predictions performed in the bottom-up step.
Among the bottom-up strategies, ISO-DESCENS methods, explicitly
considering the positive descendants, achieve better results than those
that consider the positive children only (see also Supplementary Table
S11 for full details). This confirms our intuition that the information
embedded in the leaf nodes should be propagated most. HTD performs
worse than all the other hierarchical ensemble approaches in the Leaves,
Root and Mixed scenarios (Supplementary Table S11). This is quite
expected, since HTD removes the constraints violations by reducing the
scores of the descendants, and thus also reducing the sensitivity. Quite
surprisingly the ensemble parameter-free variants achieve comparable and
sometimes even better results than the parametric ones. Nevertheless, this
can be due to the limited grid of values adopted to adjust the parameters,
which could not be expanded further due to the increase in computational
time and to the massive set of experiments to be simulated. Overall
these results confirm that HEMDAG and in particular ISO-TPR-based
methods can enhance flat predictions, especially when flat predictions
are not completely random. Indeed when flat predictions are completely
random (Unif set-up), there is no advantage in using HEMDAG methods
(p = 0.5). When flat classifiers provide relatively consistent predictions
(Leaves and Root setting) we obtain p ' 1. In most intermediate cases
(Mixed setup) the probability is significantly larger than 0.5, especially
with ISO-TPR and ISO-DESCENS methods.
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Fig. 3. Win-tie-loss heatmap and boxplot results for the time-lapse experiments comparing HEMDAG with SOTA structured output methods. Results are summarized across organisms
and GO domains. Left: AUPRC; Right: Fmax results. The win-tie-loss heatmaps count how many times HEMDAG algorithms win, tie or loose against a CAFA3 approach according to
the two-sided paired Wilcoxon rank sum test (α = 0.05). A heatmap cell can range from a maximum of +18 to a minimum of -18, due to the number of organisms (6) and GO domains
(3). Boxplots show the distribution of average results across organisms and ontologies. The black and white line in the boxplots refer respectively to the median and the mean of a method
computed across organisms and ontologies, whereas the blue dashed line represent the mean of the best HEMDAG methods.

3.3 Experimental comparison of HEMDAG with
SOTA structured output methods

We evaluated the generalization performance of three of the
best performing HEMDAG algorithms from Section 3.2, i.e.
ISOdescensTF, ISOdescensW, ISOdescensTAU, versus the following
SOTA structured output methods: GOstruct, a kernel-based output-
structured approach (Sokolov and Ben-Hur, 2010), DeepGOCNN, a deep
convolutional neural network, DiamondScore, a sequence similarity-
based prediction method, and DeepGOPlus, an ensemble approach that
combines DeepGOCNN and DiamondScore (Kulmanov and Hoehndorf,
2019). We selected the competing structured output methods according
to the following criteria: a) they have been among the top ranked in the
recent CAFA2 and CAFA3 international challenges and b) their standalone
software is freely available for research purposes. We considered the
same six organisms used in the experiments presented in Section 3.1,
by covering more than 80K annotated proteins and about 7K of unique
GO terms. We adopted a time-lapse hold-out procedure, i.e. predicting the
new GO annotations of the June 2020 GO release using the annotations
available in the GO release of December 2017.

Experimental set-up and performance metrics. As protein-protein
interaction network, we used the most recent release of STRING –
v11 (Szklarczyk et al., 2018), and we downloaded the protein-
GO term associations from GOA database (June 2020 release).
The source code adopted to build the datasets is available at
https://github.com/AnacletoLAB/godata-pipe. Full details
of the experimental set-up are available in Supplementary Section S8.3.

As HEMDAG base learners, we adopted the ones that achieved the
top performances (averaged across organisms and ontologies) in the
experiments presented in Section 3.1, namely the random forest (rf) and
the support vector machine (svm).

While ISOdescensTF is a non parametric method, for ISOdescensTAU and
ISOdescensW we run grid search through internal 5-fold cross-validation
to tune hyper-parametersw and τ (both in the range from 0.1 to 0.9 at 0.1

steps) by optimizing the AUPRC value. For what regards DeepGOPlus,
we used the optimized CNN architecture as provided by the authors
(Kulmanov and Hoehndorf, 2019), while parameter α was tuned by
using the authors’ implementation. We did not optimize the hyper-
parameters of GOstruct, due to its impractical computational costs and
we used the default parameter setting suggested by the GOstruct authors
themselves (Sokolov and Ben-Hur, 2010).

Experimental results. The heatmaps and the boxplots depicted in
Fig. 3 comparatively show HEMDAG versus SOTA structured output
methods performances, by merging the results coming from all organisms
and GO domains. The heatmaps show that HEMDAG significantly
outperforms the structured output methods (across organisms and

GO domains) for both the AUPRC and Fmax metrics (Fig. 3). According
to the two-sided paired Wilcoxon rank sum test (α = 0.05) and
considering AUPRC (resp. Fmax), HEMDAG wins in the 78% (62%)
of total cases; ties in the 19% (36%) of the cases and looses in the
remaining 3% (2%) of cases. Detailed experimental results available
in Supplementary Section S8 reports win-tie-loss results and compared
boxplots for each organism, GO domain and performance metric, the
compared precision at different recall levels, showing that HEMDAG is
competitive with SOTA structured output prediction methods for AFP.
Supplementary Table S15 shows that HEMDAG is also significantly faster
than the competing methods.

3.4 Experiments summary

Among HEMDAG methods, the experimental results show that the
newly proposed ISO-TPR algorithms should be chosen to improve
flat predictions. In particular, as a “thumb rule”, we suggest to use
ISOdescensTAU as default HEMDAG method, since it obtained the
best results with both synthetic and actual data for GO term prediction.
Indeed this algorithm integrates isotonic regression that assures consistent
predictions close to those obtained by the TPR algorithm in the bottom-
up step (that improves sensitivity); moreover predictions at each node
directly use all the “positive” predictions of the descendant nodes, and
finally the contribution of the children nodes can be differentially weighted
with respect of the rest of the descendant nodes. Interestingly, a relatively
similar algorithm, i.e. descensTAU (that applies HTD instead of GPAV in
the consistency step), was the algorithm that achieved the best results
in the context of the the hierarchical prediction of HPO terms (Notaro
et al., 2019). A user can also experimentally compare the different
HEMDAG methods to choose the one best suited for specific data,
organism and GO domain. To this end the online tutorial (available
at https://hemdag.rtfd.io/en/latest/call.html) offers
specific functions and scripts to facilitate this task using the freely
downloadable HEMDAG software library.

4 Conclusion
We proposed a suite of highly modular and scalable hierarchical
ensemble methods to predict GO protein functions and able to satisfy
the GO hierarchical constraints. Extensive experiments carried-out on
several organisms, tens of thousands of proteins and thousands of
GO terms showed that our methods systematically boost the predictions of
“hierarchy-unaware” classifiers, and that they achieve competitive results,
while exhibiting a lower computational complexity than SOTA structured
output approaches. From a more general standpoint, HEMDAG is a
flexible tool that can be applied upon any off-the-shelf classifier neglecting
hierarchical constraints, to correct and improve its predictions. A critical
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aspect of HEMDAG, and in general of all hierarchical ensemble methods,
is that their performance depend on the ability of the underlying flat
learner to provide accurate predictions, making the choice of the base
learners crucial to attain good quality solutions. Our experimental results
suggest that Random Forests and Support Vector Machines constitute in
general a good choice, with Random Forests preferable when the goal
is to predict the function of a given protein (protein-centric evaluation),
and Support Vector Machines preferable when the aim is to prioritize the
gene products with respect to a specific GO term (term-centric evaluation).
More generally, considering that our experimental results support the
hypothesis that HEMDAG can be applied to improve any flat prediction,
especially when they are accurate, a possible future collaborative work
with the AFP community could be the application of SOTA AFP prediction
methods (e.g. the best CAFA3 methods) in conjunction with HEMDAG to
verify whether our hierarchical ensemble approach can further improve
their performance. Besides, the HEMDAG framework is general enough
to be safely applied also to any DAG-structured ontology, such as
HPO (Köhler et al., 2018) or the Disease Ontology (Schriml et al.,
2018), but also to any tree-structured taxonomy, such as for instance
FunCat (Ruepp et al., 2004), being trees a particular case of DAGs. The
highly modular algorithmic schema of HEMDAG allows also to easily
introduce novel algorithmic variants, or bottom-up strategies to select
“positive” descendant nodes. In addition, to further enhance the overall
performance, multi-task learning algorithms (Widmer and Rätsch, 2012;
Frasca and Cesa-Bianchi, 2016) can be in perspective employed as base
learners of the HEMDAG framework, so as to embed the relationships
among GO terms already during the classifier training phase.
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