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Abstract Significant advances in high-throughput sequencing technologies raised
exponentially the rate of acquisition of novel biological knowledge in the last
decade, thus resulting in consistent difficulties in the analysis of vast amount of
biological data. This adverse scenario is exacerbated by serious scalability limita-
tions affecting state-of-the art within-network learning methods and by the limited
availability of primary memory in off-the-shelf desktop computers. In this contribu-
tion we present the application of a novel graph kernel, transductive and secondary
memory-based network learning algorithm able to effectively tackle the aforemen-
tioned limitations. The proposed algorithm is then evaluated on a large (more than
200,000 vertices) biological network using ordinary off-the-shelf computers. To our
knowledge this is the first time a graph kernel learning method is applied to a so large
biological network.
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1 Introduction

Many efforts have been devoted in the last decade to developing automated tools for
large scale automated function prediction of proteins (AFP) [2, 3]. A recent inter-
national challenge for the critical assessment of automated function prediction [6],
highlighted that scalability and heterogeneity of the available data represent two of
the main challenges posed by AFP. From a learning perspective the problem is fur-
ther complicated by the different functional annotation coverage in different organ-
isms that make very difficult the effective transfer of the available functional knowl-
edge from one organism to another. A possible approach for gene functional anno-
tation transfer between species relies on the availability of a collection of orthology
relationships across interspecies proteins, and on the usage of an evolutionary re-
lationships network as a suitable medium for transferring functional annotations to
the proteins of poorly annotated organisms [7]. In this scenario a possible solution
could be the application of network based learning methods on multi-species bio-
logical networks so that annotations coming from well annotated organisms could
be used to effectively transfer functional annotations between species.

Unfortunately this approach is only apparently simple given the serious scala-
bility limitations affecting graph-based learning algorithms (i.e. the popular label
propagation and random walks based methods). These approaches usually rely on
an in-memory adjacency matrix representation of the graph network, scale poorly
with the size of the graph [9], and time complexity may become quickly prohibitive.
When the size and structural complexity of the graph becomes so high that it is not
possible to maintain it entirely in primary memory, alternative strategies (i.e. par-
allel/distributed computation [4, 11, 12], or secondary memory-based computation
[8, 19, 5]) can be considered. However, at least in the case of the parallel/distributed
computation, the identification of the optimal partitioning of the graph that mini-
mizes the message passing requirements across a possibly large number of nodes of
an HPC cluster is not immediate, especially in the case of very large and complex
networks.

We previously proposed [13] a scalable semi-supervised network-based learning
of protein functions algorithm that can be applied to large multi-species networks
and is implemented using secondary memory-based technologies. Despite the ap-
pealing scalability performances from a learning standpoint this method is a classi-
cal random walk on graph. This paper extends the previous proposal by developing a
local within network learning method based on the Random walk kernel [17] and a
previously developed kernelized functions learning framework [15]. The novel local
and secondary memory-based graph kernel method is compared with the classical
random walks on graphs both in terms of learning performances and empirical time
complexity.

To our knowledge this is the first reported case of application of a local and
secondary-memory based graph kernel method to a very large biological network.

This manuscript is organized as follows. In the next section we introduce our pro-
posed approach based on the local and secondary memory-based implementation of
network-based algorithms (classical random walks on graph) for the multi-species



Learning on big graphs using secondary memory-based kernels 3

AFP problem. We then present the novel random walks kernel local algorithm. We
finally compare the algorithms in a multi-species AFP problem on a large biologi-
cal network including 13 species of Eukaryotes and containing more than 200,000
proteins.

2 Local version of the classical Random Walk algorithm

Network-based algorithms learn by exploiting the overall topology of the networks
[14, 15, 18], and their implementations usually require to process in primary mem-
ory a large part or the overall underlying graph. The main drawback of these im-
plementations is that big networks cannot be entirely loaded into primary memory
using off-the-shelf machines.

In [13] we developed local implementations of global network algorithms (clas-
sical random walks (RW) on graphs) by iteratively processing only one vertex and
its incident edges at a time. In other words we do not reject to think globally by
exploiting the overall topology of the network, but at the same time we solve lo-
cally by designing implementations of these algorithms through a vertex-centric
programming model [4, 12].

A key feature of all the presented implementations is that the potentially very
large matrices used by the primary-memory based versions of the classical random
walk algorithm as well as of their kernelized versions are never computed nor stored
entirely in main memory. All the learning algorithms presented in this paper were
implemented by considering that:

o the existence of an edge in the network can be exploited as the only medium to
propagate information between the vertices located at its endpoints;

e the knowledge of the set of edges originating from a vertex is enough to define
its direct neighbourhood;

e the computation of the final score of a vertex can be decomposed in many steps
each depending uniquely on the topology of the network and on the status of the
vertices directly connected to the considered vertex;

e the score can be progressively accumulated into a single variable that is local to
the vertices of the network.

RW algorithms [10] explore and exploit the topology of the functional network,
starting and walking around from a subset Vjy C V of nodes belonging to a specific
class M by using a transition probability matrix Q = D~!W, where D is a diagonal
matrix with diagonal elements d;; =Y, iWij- The elements g;; of Q represent the
probability of a random step from i to j. The initial probability of belonging to M
can be set to p® = 1/|Vjy| for the nodes i € Vs and to p® = 0 for the nodes i € V'\ V.
If p' represents the probability vector of finding a “random walker” at step ¢ in the
nodes i € V (that is, p! represents the probability for a random walk of reaching
node i at step t), then the probability at step ¢ + 1 is:
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and the update (1) is iterated until convergence. Given that a too deep exploration
of the network can lead to a steady state with suboptimal learning performance, it is
common practice to try with different number of predefined steps.

With the RW method at the steady state or at an optimized number of steps we
can rank the vector p to prioritize nodes according to their likelihood to belong to
the class M under study.

Looking from a “local” perspective at RW algorithm, the update rule (1) becomes:

Pt =0 p' 2)

where pj is the probability of the i node, and Q; represents the i column of the Q
probability transition matrix. By recalling that W represents the original adjacency
matrix of the graph and W its i/ column, from (2) we obtain:

n
pitt =D W p =Y di wi 3)
j=1

This is the update rule of the random walk resolved at the i node of the graph, and
can be viewed as a “local” version of (1): by updating all the nodes i of the graph,
1 < i < n, we update the probability vector p'*! exactly in the same way of (1).

To compute (3) we need the following “local” data:

. p? (that is, the probability of the i " node at start)
dfj I Z.lei (that is, the sum of weights of the edges coming from j)
. wji, 1 < j <n(thatis, the weights of the edges going to i)

. ptj, 1 < j < n (that is, the probabilities of nodes at the previous step).

If the graph is indirect (an this is the case for AFP problems), the weights
of incoming and outcoming edges are the same, that is Vi,Vj w;; = wj;. This
implies that we need to store only the list of edge weights outcoming from i:
L(i) = {wjj|w;; > 0}. This in turn implies that in sparse graphs the spatial (and
temporal) complexity at each node is sublinear. It is easy to see from (3) that the
complexity of each iteration of the algorithm is &'(n?), but with sparse graphs, i.e.
when Vi, [{(j,i)|wji > 0}| << n, the complexity is &'(n).

3 Local version of the Random walk kernel and Kernelized
Score Functions

In [15] we proposed the kernelized score functions algorithmic framework that
generalizes the notion of average, nearest neighbour and k-nearest neighbour dis-
tance from the set of positive nodes in a given network annotated to a specific func-
tional class, and embeds a general kernel to model the functional similarity between
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nodes. This semi-supervised transductive learning method generalizes the guilt-
by-association (GBA) approach [6] by introducing fast and efficient local learning
strategies based on an extended notion of functional distance between the vertices,
and adopts also a global learning strategy by using kernel functions able to exploit
the relationships and the overall topology of the underlying network. The imple-
mentations presented in [15] were all “global” (primary memory-based). In order
to significantly improve the scalability of the kernelized score functions we need to
consider local implementations of:

1. The score function
2. The kernel embedded in the score function

The Average, Nearest Neighbour and k-nearest Neighbour score functions [16,
15] can be naturally implemented in “local” form once we are able to cast in local
form the computation of the underlying kernel. In this work we focus on the Average
score function:

SAV i VC

Z K(x;,x;) 4

|VC‘ JjeVe

where V( is the set of positive vertices i € V that belongs to a given functional class
and x;,x; are features associated respectively with node 7 and j, usually represented
as real vectors. To compute (4) we need the following “local” data:

1. The i*" row K; of the kernel matrix K
2. The set V¢ (indices of the positive columns)

The complexity is &(|Vc|), that is constant if |V¢| << n.
The “global” version of the 1-step random walk kernel is the following [17]:
K= (a—DI+D WD 2 (5)

Where [ is the identity matrix, D is a diagonal matrix with elements d;; =} ;w;;
and W is the symmetric adjacency matrix of an indirect graph G = (V, E). It is easy
to derive from (5) the following “local” implementation of the 1-step random walk
kernel, where K (x;,x;), for the sake of simplicity is represented as k;;:

1
d_j d 2 ‘f. .
kij: i Wl] Jjj 1 1 l#] (6)
(a—1)+d;?> w,'jdjj2 ifi=j

To compute (6) we need the following “local” data for each edge (i, j):
1. its weight w;;
1

1 1
2. the values d;; > and a’jj2
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The local computation complexity is constant. To compute the overall matrix the
complexity is &(n?). The g-step random walk kernel with ¢ > 1 can be computed by

following a step-by-step strategy based on this recursive formula: K}, = K}, IK,W.
3.1 Putting together the Average score and the local version of the
random walk kernel

By putting in (4) the local version of the random walk kernel (6), we obtain a “local”
version of the average score with 1-step random walk kernel:

1 1
Sav (i,Ve) = — K(xi,xj) = — kii =
AV( C) |VC‘ ]EZVC ( i J) |VC|]€ZVC 1]
1 o
-1 (=) "
| C|j€VC

where (z) is 1 if z is true and 0 otherwise. To compute (7) we need the following
“local” data:

1. The row W; of the adjacency matrix W
2. The set V¢ (indices of the positive columns)

1 -1
3. the values d; * and {d;;*|j € Vc}

The local complexity is &(|V¢]), that is constant if |V¢| << n.

The main problem affecting the proposed solution for the local computation of
the Average score based on a random walk kernel is that, using an approach starting
from the adjacency matrix, a certain locality is maintained in the computation of the
1-step and 2-steps but when we compute RWK with 3 or more steps we need the
overall matrix and the “locality” is completely lost.

To overcome the complexity problems raising from the local computation of the
p-step RWK with p > 1, we propose an iterative version of the kernelized score
functions with random walk kernels.

3.2 Iterative computation of the kernelized Average Score function
with p-step RWK

As stated in Section 3.1 the iterative nature of the p-step RWK computation poses
serious challenges from a local implementation perspective and a progressive local-
ity loss make solutions based on simple modification of the classical random walks
unsuitable for real world big graph. In order to overcome this limitation we propose
a novel representation of the combined RWK-kernelized score functions computa-
tion that better fits the constraints imposed by the analysis of very large graphs and



Learning on big graphs using secondary memory-based kernels 7

by the vertex-centric programming paradigm.

More precisely, we propose an iterative formula for computing the Average ker-
nel score with a p-step random walk for the whole graph. Such formula consists in
a simple matrix-vector multiplication at each iteration.

Recall that for every node i € V the average score of the p-step random walk ker-
nel starting from Vo C V is Say (i, Vo) = ‘V% Yjev. (KP)ij. Let’s denote the column
vector constructed from Say (i, V) by varying i with

Sav(Ve) = [Sav(1,Ve), -+, Sav (n, Vo))" .

It can be shown that the vector Say (V) of average scores for the whole graph
G =< V,E > with a p-step random walk kernel starting from nodes of Vo C V can

be computed as Sy (Vo) = D% vP by the iterative formula
vV =Mv!  where M =[(a—1)I+D"'W]

with the initialization vector v* having element

1 . .
—— if ;
V? —J WVelva M € V.C’
0 otherwise.

We will now show how to compute the average score for the p-step RWK using a
local implementation, i.e. on a vertex-based graph computation model.

Consider the “global” iterative formula v/ = My”~!; denote by vf the i-th el-
ement of v/ and by I(i) = {j € V : w;; > 0} the incoming neighbors of i in the
weighted graph G. We have

P _ Pl Pl
Vi = ZMlJVj = Z Mijvj
jev J:M;;>0

Since

Moo — a—1ifi=j
v % otherwise.

we can establish the rule for updating the value of a vertex i in the graph:
P _ ﬂ p—1 -1 p—1 _dfl P -1 p—1 8
vi = Z v+ (a—1)y; T =d; Z wijv; Fa=1Lvi . (®)
j;ﬁiIW,‘j>0 u jGI(i)

Finally, using the iteratively computed v/ value, the vertex-centric score S4y can be
easily obtained:

1
Sav (i,Ve) =d2v )

i Vi

Therefore, in a vertex-based graph computation model, at every update step it is
sufficient to take into account for each vertex i € V:
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the old value v/ ~! of all neighboring vertices j € I(i),
the weight w;; of all incoming edges,
the weighted in-degree d;

and then use the previous rule for the updating. This kind of computation scheme
can be implemented in any vertex-based graph analytics programming framework.

4 Experimental settings

We applied our methods based on the local implementation of network-based al-
gorithms and secondary memory-based computation to the multi-species protein
function prediction in eukarya. In all the experiments we implemented the network-
based methods using GraphChi, a software library for large-scale graph computa-
tion using secondary memory [8]. All the experiments have been performed using
off-the-shelf desktop computers with a limited amount of RAM memory (4 GB). It
is worth noting that in these experimental conditions random-walk algorithms that
store in primary memory the adjacency matrix of the graph described in Section 4.1
run out-of-memory due to the limited amount of available RAM.

In the remainder of this section we summarize the experimental set-up and
the characteristics of the data, and then we compare the empirical computational
time and the performance of secondary memory-based implementations of network
learning algorithms for AFP.

Table 1 Selected species from the core region of the STRING protein networks database

NCBI taxon ID. Species n. proteins
3218 Physcomitrella patens 10352
3702 Arabidopsis thaliana 23576
7227 Drosophila melanogaster 12845
7739 Branchiostoma floridae 16418
8364 Xenopus (Silurana) tropicalis 13678
9031 Gallus gallus 13119
9258 Ornithorhynchus anatinus 13333
9606 Homo sapiens 20140
9615 Canis lupus familiaris 16912
10090 Mus musculus 20023
13616 Monodelphis domestica 15409
39947 Oryza sativa Japonica 13330

69293 Gasterosteus aculeatus 13307
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Table 2 Average per-term empirical time complexity between the compared local and secondary
memory-based network learning methods implementations

Local algorithm per-term empirical time complexity evaluation
1-step RW 21.46s
2-step RW 33.19s
3-step RW 46.69s
1-step RWK (Average score) 21.05s
2-step RWK (Average score) 34.05s
3-step RWK (Average score) 46.25s

4.1 Dataset description and performance evaluation

In order to test the ability of the proposed local methods to scale to large multi-
species networks, we constructed a large genes network (hereafter referred to as
Eukarya-net). All the proteins interactions composing Eukarya-net were down-
loaded in precomputed form from the STRING protein-protein interactions database.
STRING (http://string-db.org/) is a collection of networks composed by real and
predicted gene-gene interactions (based on genetic data, physical data and literature
data) and aims at providing a global view of all the available interaction data, in-
cluding lower-quality data and/or computational predictions for as many organisms
as feasible. Starting from the STRING interaction data (version 9.05), we selected
all the Eukaryotic species having 10,000 or more proteins. The selected Eukaryotic
species are listed in Table 1.

As class labels for the proteins included in Eukarya-net we used the Gene ontol-
ogy [1] (GO) annotations available in STRING (version 9.05). The STRING web-
site provides flat text files containing a mapping from GO annotations to STRING
proteins and a STRING internal confidence score for each GO annotation, ranging
from 1 (low confidence) to 5 (high confidence). While extracting the GO labels we
considered only the annotations with confidence score 5. We then filtered out all the
GO terms associated with less than 20 and more than 100 proteins (473 GO terms).
We finally randomly selected from this set 50 GO terms.

Performance were evaluated in terms of runtime, Area under the Receiver Oper-
ating curve (AUROC), and Precision at fixed Recall levels using a canonical 5-fold
stratified cross validation scheme.

4.2 Results

Table 2 summarizes the average per-term runtime required to complete a 5-fold
cross validation with the Eukarya-net involving more than 200,000 proteins of 13
multi-cellular eukarya organisms.
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We observe that the average computational time is very similar for both the RW
and RWK-based kernelized functions secondary memory-based implementations.
The performance (see Table 3) in terms of the average precision at fixed recall levels
obtained in this test are relatively low, especially when compared with the high
average AUC obtained with the RW at 1, 2 and 3 steps. The observed relatively
low precision can be explained by taking into account that it is more negatively
affected by class unbalance and, in the Eukarya-net network task, the positives are
at most 100 while the number of vertices in the network is 202,442 (i.e. the positives
are less than 0.05% of the vertices at best). Note that in this case the 2-steps RW
achieves the best AUROC results: it is likely that these results could be due to the
connections between nodes representing proteins coming from different species but
further evaluation is required in order to clarify the observed results.

Table 3 Average AUC, precision at 20% recall (P20R) and precision at 40% recall of the compared
local and secondary memory-based network learning methods across 50 GO terms. Performance
estimated through 5-fold cross-validation.

Algorithm AUROC P20R P40R

RW -1 step 0.8601 0.1449 0.0943
RW - 2 steps 0.9667 0.1329 0.0929
RW - 3 steps 0.9598 0.0927 0.0785
RWK 1 step (Average score) 0.9106 0.2115 0.1422
RWK 2 steps (Average score) ~ 0.9902 0.2670 0.1605
RWK - 3 steps (Average score) 0.9680 0.2314 0.1498

As we can see the best performances in terms of AUROC are obtained at two
steps also with the RWK-based average score function. While the differences in
AUROC performances between the classical and kernelized random walks based
methods are not so big, the same does not hold with respect to the performances in
terms of P20R and P40R (respectively precision at 20% and 40% recall), where the
random walk kernel clearly outperforms the local classical random walk-based gene
function predictor.

Overall, these results show that the secondary memory-based implementation of
kernelized score functions allow the analysis of big networks using off-the-shelf
desktop computers, and achieve results competitive with the classical random walk
algorithm in the multi-species prediction of protein functions.

5 Conclusions

In this work we presented a novel secondary memory-based implementation of a
Random walk kernel network learning method. More precisely, we developed a
novel local and secondary memory-based algorithm able to compute a kernelized
score function (the average score) embedding a p-step random walk kernel. The
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proposed algorithm has been applied to the prediction of protein functions in the
context of a multi-species large biological network involving more than 200,000
proteins. The experimental results show that the local version of the kernelized ver-
sion of the random walk exhibits an empirical time complexity comparable with
a local RW and secondary memory-based within network learning algorithm, and
outperforms the classical random walk algorithm for the multi-species prediction of
protein functions. From a more general standpoint we believe that “local” versions
of network-based algorithms, together with an efficient secondary memory-based
implementation, can open new avenues for the analysis of big and complex net-
works in computational biology, without the mandatory need of complex clusters
of computers or expensive stand-alone workstations equipped with very large RAM
memory.
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