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Abstract. One of the main issues in the problem of detecting genes involved in the
etiology of genetic human diseases is the integration of different types of available
functional relationships between genes. Numerous approaches exploited the comple-
mentary evidence coded in heterogeneous sources of data to prioritize disease-genes,
such as functional profiles or expression quantitative trait loci, but none of them to our
knowledge posed the scarcity of known disease-genes as a feature of their integration
methodology. Nevertheless, in contexts where data are unbalanced, that is, where one
class is largely under-represented, imbalance-unaware approaches may suffer a strong
decrease in performance. We claim that imbalance-aware integration is a key require-
ment for boosting performance of gene prioritization (GP) methods. To support our
claim, we propose an imbalance-aware integration algorithm for the GP problem, and
we compare it on benchmark data with other integration methodologies neglecting data
imbalance.

1 Scientific Background

In the context of Network Medicine, discovering genes causing complex diseases,
also known as “disease-genes”, has become a central and complex challenge [1, 2].
This process, called gene prioritization (GP), usually aims to supply a ranking of genes
according to their involvement in the etiology of a given disease. A main issue character-
izing the GP problem is the availability of a large amount of heterogeneous information
about gene networks, ranging from protein—protein interactions to gene co-expression
and functional similarity [3]. Indeed, excluding the potentially complementary evi-
dence coming from heterogeneous data sources may be a strong limitation [4]. Sev-
eral research groups have adopted computational methodologies that rely on the use of
multiple heterogeneous networked-sources, and a general approach is to combine the
topology of each available network into a more informative ‘consensus’ network, also
having a larger coverage [5, 6]. A common practice leverages weighted schemas to con-
struct a linear combination of the input networks, by computing for the disease under
study an informativeness coefficient for each network. This coefficient represents, to
some extent, the ‘usefulness’ of the network in predicting that disease, and it should
take into account the rarity of known disease-genes characterizing most diseases in ex-
isting disease ontologies, such as the Medical Subject Headings (MeSH)' (thousands of
genetic diseases still have none or very few known causative genes). When a disease-
gene (positive gene) is rare for a given disease, it carries most information about the
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latter, and when an input source is such that it helps classifiers in correctly ranking
positive genes, the informativeness coefficient of that source must be higher. Indeed,
imbalance-aware integration led to successful results in similar contexts, such as the
protein function prediction [7]. Nevertheless, this central issue has been neglected by
most existing approaches for data source integration for gene prioritization.

We argue in this paper that, even for the GP problem, network integration must con-
sider the rarity of available disease-genes to improve the accuracy of gene rankings. To
this purpose, we extended the integration algorithm UNIPred (Unbalance-aware Net-
work Integration and Prediction, [7]), in order to emphasize the importance of positive
genes in the integration process. UNIPred can capture the usefulness of each data source
for a disease of interest by specifically handling the imbalance of data labelings. The
method has been extended by introducing a novel optimization criterion, in which the
relevance to be attributed to positive genes is associated with a free parameter, so as
to facilitate verifying our claim. By using the network usefulness computed through
UNIPred, the consensus network is built and given as input to WGP, a recent network-
based algorithm proposed to prioritize disease-genes [8]. The overall methodology has
been then validated on a benchmark data set composed of nine human networks and 708
MeSH disease terms [5].

2 Materials

Our setup follows a benchmark proposed in [5] for data integration in the GP con-
text. Nine human gene networks covering 8449 genes are available, considering het-
erogeneous data sources, as described in the following (see [S5] for details about each
network).

Functional interaction network — finet. A network covering 8441 selected proteins and
contains protein—protein functional binary interactions.

Human net — hnnet. A network combining distinct lines of evidence from four species,
including human mRNA co-expression, protein—protein interactions, and protein
complexes.

Cancer module network — cmnet. A network of 8849 genes collecting interactions
derived from expression profiles in different tumors in terms of the behavior of
modules of correlated genes.

Gene chemical network — gcnet. A network of 7649 genes constructed on the basis
of direct and indirect genes—chemical interactions available at the Comparative
Toxicogenomics Database (CTD) [9].

BioGRID database network — dbnet. Protein—protein interaction network for 8449 pro-
teins based upon direct physical and genetic interactions obtained from BioGRID
(v. 3.2.96 - January 2013).

BioGRID projected network — bgnet. An extended network from BioGRID con-
structed by retrieving the connection between the 8849 genes in the benchmark
against all human genes in a bipartite graph, and by considering the common
neighbours to determine the degree of similarity between two genes in the bench-
mark.

Semantic similarity networks — {bp,mf,cc}net. Three networks obtained by consid-
ering the Gene Ontology (GO, [10]) terms in the three branches annotating the
considered genes: biological process (bp), molecular function (mf) and cellular
component (cc).
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Gene—disease associations have been downloaded from the CTD database and include
708 selected MeSH terms having from 5 to 200 annotated disease-genes.

3 Methods

Every input network is represented through a weighted undirected graph G*) =
(V, W®) on the genes/instances V' (or a subset of it), where k € {1,2,...,m} is the
network index and W*) is the connection matrix: the entry Wz(’;) € [0, 1] indicates a
degree of functional similarity between genes ¢ and j. Here m is the number of available
networks over genes V. If a network covers just a subset of V, it is extended to V' by
adding zeros in the corresponding entries of the connection matrix. We assume thereby
in the following that all networks cover the set V. Given a disease of interest d, every
gene i € V possesses a label y; € {0, 1} denoting that gene 7 is currently associated
with d (label 1, positive gene) or not (label 0, negative gene).

The aim is to construct a composite network G = (V, W) integrating all available

networks. This is performed by associating every network G*) with a coefficient rc(lk)

related to its informativeness for disease d. To compute rék) we adopt an extension of

the UNIPred algorithm, briefly described in the following.

3.1 UNIPred

The UNIPred algorithm computes for every networked-source a relevance score tak-
ing expressly into account the disproportion between 1-labeled and O-labeled genes for
the studied genetic disease d. In particular, UNIPred operates a network projection onto
the plane so that each gene ¢ € V' is associated with a labelled bi-dimensional point
Pz-(k), embedding the local imbalance in the corresponding node position. For a given
network G®, the coordinates Pi(k) = (Pl(lf), Pf?) are computed as follows:
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In other words, Pi(ff) is the weighted sum of 1-labeled neighbors, Pi(,];) is the weighted

sum of 0-labeled neighbors. The position of each point in the plane thereby reflects the
topology of the connections towards neighboring positive and negative nodes.

The algorithm then learns a parametric straight line to separate positive and negative
points. In this way, since every point already has a label, each line is associated with the
number 7' P™*) of positive points correctly classified (true positives), the number F N )
of positive points wrongly classified (false negatives), and the number F' P*) of negative
points wrongly classified (false positives). Lines are selected by an approximated su-
pervised algorithm maximizing an imbalance-aware criterion, namely the F—measure:

(k) . = . .
F) = ST fgzlj(k) TFNTT The maximum value F*) of the F-measure obtained during

the learning phase is then considered as relevance rflk) for the input network G*), In
order to emphasize the need of attributing higher importance to positive genes, here we
introduce a variant of the objective function, named F3—measure, defined as:

) (14 )T P®
Fom 1+ 8)TP® + FPK 4 g2EN®F

)

Indeed, the parameter 5 € R allows to regulate the importance to be assigned to
the misclassification of positives rather than negatives, thus for 5 > 1 we penalize
more the misclassification of positives. The larger 3, the more relevant are positives in

determining the network coefficient rék).
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3.2 Constructing the integrated network
For a given disease of interest d, UNIPred is applied to each input network inde-
pendently, obtaining the relevance vector r; = (rc(ll), 7}(12)7 sy rém)). The consensus

network is then constructed as a weighted sum of the corresponding adjacency matrices:
m
w=> rPwh
k=1

Moreover, in order to have a baseline comparison, networks are also integrated by un-
weighted average sum (US) that is W = s W® /|

3.3 Inferring the gene prioritization list

Once the consensus network G = (V, W) is constructed, we are ready to face the
gene prioritization problem, which is modeled as a semi-supervised ranking problem on
graphs. The set of genes is assumed to be partitioned into L and U, disjoints subsets of
V respectively containing the labeled and unlabeled genes, and the objective is to infer
a ranking of genes in U according to the given disease of interest. Only for genes ¢ € L
the label y; € {0, 1} is thereby known (with reference to the studied disease d), and
the aim is learning a function ¢ : U — R so as to rank higher genes susceptible to be
involved in the etiology of d.

Furthermore, analogously to the integration step, the complexity of the problem is
increased by the rare presence of positive genes, necessary for any classifier to in-
fer ‘meaningful’ solutions. Accordingly, the adopted methodology has to consider
this characteristic of the problem to prevent a large decay of the ranking quality [11].
To learn the ranking function ¢ we employed a regression model proposed in [8],
termed WGP (Weighted Gene Prioritization), able in handling the label imbalance.
Briefly, starting from the integrated network, WGP adopts a node projection onto a
bi-dimensional space, where a weighted binomial regression model with log-log link
function, a skewed function suitable for unbalanced data, is learned to separate positive
and negative classes, and to consequently infer the desired prediction.

4 Results

Following the benchmark setting [5], the generalization performance of our method
has been assessed through a classical 5-fold cross-validation procedure, and the results
were evaluated by using the Area Under the Receiver Operating Characteristic Curve
(AUC) and the Precision at different Recall levels (PxR). In addition, we computed the
Area Under the Precision Recall Curve (AUPRC), to take into account the imbalance of
annotated vs. unannotated genes for the MeSH disease terms. The validation of WGP-
UNIPred algorithm on benchmark data showed a noticeable improvement with respect
to the compared methods, including random walks [12], random walks with restarts,
guilt-by-association methods [13] and kernelized average score functions (S 4y, [14]).
Fig. 1 shows the overall performance, emphasizing both the gain of UNIPred with re-
spect to US integration schema and the influence of the 5 parameter on the performance.
In Fig. 1 and 2 we only showed the results of S 4y with weighted (WS) and unweighted
sum (US) integration, since random walk and the other compared methods achieved
worse results than S4y. In particular, in [5] average AUC results across diseases have
been used to weight networks according to the WS integration for Sy .

To better evaluate the behaviour of our methodology, we also show results averaged
across diseases with at most 10 (category ‘110’) and more than 10 (category ‘m10’)
associated genes. AUPRC results are not provided in the benchmark. The predictive
capability of the model remarkably improves when increasing the parameter 3, and
more in the most unbalanced diseases (//0), confirming the need of imbalance-aware
integration. Conversely, in US schemas, there is an almost negligible difference between
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Figure 1: Performance of WGP-UNIPRED on benchmark data. ‘110’ and ‘m10’ refer to the subsets of
MeSH disease terms with 5—10 and 11-200 associated genes, respectively, whereas circles correspond
to results averaged across all diseases. The black horizontal dashed line corresponds to the average
performance across all diseases of WGP on unweighted sum (US) data, whereas the dashed light grey
(resp. grey) line corresponds to WGP performance on US data averaged across the category ‘110 (resp.
‘m10’). The black and light grey horizontal dotted lines for the AUC results instead denote the average
AUC achieved by S 4y on weighted (WS) and unweighted sum data, respectively.

[10 and m10 disease categories. The performance of WGP-UNIPred tends to become
stable for values of 3 larger than 10, and interestingly, the improvement of weighted
integration is larger for WGP than for S4,, when compared with the corresponding
unweighted strategies. This confirms that using an imbalance-aware criterion (unlike
the AUC) to weight networks is more effective in this context. Apparently, the larger
improvement for UNIPred compared to US schema for m/0 with respect to /10 terms
(in both AUC and AUPRC) is quite unexpected, since //0 terms are more unbalanced;
nevertheless, since the available information for //0 terms is very small, this behavior is
likely due to overfitting phenomena. Indeed, similar works have shown that regularizing
the network effectiveness for more unbalanced terms led to better results [15].
WGP-UNIPred (8 = 20) also compares favourably in terms of PxR (Fig. 2). Even
in this setting, WGP-UNIPred outperforms .S 41, except for 0.1 recall level on US data.
Confirming the behaviour in terms of AUC, the weighted sum integration (WS) using
the UNIPred imbalance-aware network relevance led to larger improvements than the
imbalance-unaware weighted integration with regard to US corresponding results.

5 Conclusion

Experimental results supported our claim that the integration of omics data (ge-
nomics, transcriptomics, proteomics and so on) need imbalance-aware procedures for
improving the accuracy of gene prioritization lists. A state-of-the-art integration al-
gorithm, UNIPred [7], has been used to boost the performance of a gene prioritization
method, WGP [8]. By explicitly modelling the integration procedure on the exploitation
of the known disease-genes, WGP-UNIPred outperformed other state-of-the-art meth-
ods in predicting gene—disease associations on public benchmark data.
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Figure 2: PxR results achieved by the top benchmark method S4y and WGP-UNIPred on both un-
weighted and weighted schemas.
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