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Abstract The bio-molecular diagnosis of malignancies represents a difficult learn-
ing task, because of the high dimensionality and low cardinality of the
data. Many supervised learning techniques, among them support vector
machines, have been experimented, using also feature selection meth-
ods to reduce the dimensionality of the data. In alternative to feature
selection methods, we proposed to apply random subspace ensembles,
reducing the dimensionality of the data by randomly sampling subsets
of features and improving accuracy by aggregating the resulting base
classifiers. In this paper we experiment the combination of random sub-
space with feature selection methods, showing preliminary experimental
results that seem to confirm the effectiveness of the proposed approach.
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1. Introduction
High throughput bio-technologies based on large scale hybridization

techniques (e.g. DNA microarray) can provide information for sup-
porting both diagnosis and prognosis of malignancies at bio-molecular
level [Alizadeh, A. et al., 2001]. Several supervised methods have been
applied to the analysis of cDNA microarrays and high density oligonu-
cleotide chips (see e.g. [Dudoit et al., 2002]). The high dimensional-
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ity and low cardinality of gene expression data, together with the high
sensitivity required for diagnostic problems, makes the classification of
malignant and normal samples very challenging from a machine learning
point of view.

An effective approach to this problem is represented by feature selec-
tion methods [Guyon et al., 2002], that can be useful both to select the
genes more related to malignancies and to enhance the discrimination
power between normal and malignant tissues. Recently we proposed an
alternative approach [Bertoni et al., 2004] based on random subspace en-
sembles [Ho, 1998], that is sets of learning machines trained on randomly
chosen subspaces of the original input space.

In this paper we propose to integrate the two approaches in order to
enhance the accuracy and the reliability of the diagnostic system: at
a first stage a subset of genes is selected through a feature selection
method, successively subsets of genes randomly drawn from the previ-
ously selected genes are used to train an ensemble of learning machines.
The ensemble output can be obtained through majority voting or any
other aggregation technique. We call this method Random Subspace on
Selected Features (RS-SF).

The proposed combined approach is described in the next section.
Some preliminary experimental results are shown in Sect. 3, while in
the last section we report conclusions and on-going developments of the
present work.

2. Feature selection methods and random
subspace ensembles for gene expression data
analysis

The major problem in gene expression analysis is the high dimension-
ality and low cardinality of the data, from which the curse of dimension-
ality problem arises.

An approach to this problem consists in reducing the dimensionality
through feature (gene) selection methods [Golub et al., 1999; Guyon
et al., 2002]. Many methods can be applied, ranging from filter methods,
wrapper methods, information theory based techniques and ”embedded”
methods (see e.g. [Guyon and Elisseeff, 2003] for a recent review).

On the other hand we recently experimented a different approach [Bertoni
et al., 2004] based on random subspace ensemble methods [Ho, 1998].
For a fixed k, k-subsets of features are selected. according to the uniform
distribution. Then the data of the original training set are projected to
the selected n-dimensional subspaces and the resulting data sets are used
to train an ensemble of learning machines [Ho, 1998].
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RS-SF Algorithm
Input:

- A data set D = {(xj , tj)|1 ≤ j ≤ m}, xj ∈ X ⊂ Rd, tj ∈ C =
{1, . . . , k}

- a learning algorithm L
- a feature selection algorithm F
- a number of selected features n < d
- a dimension k < n of the random subspace
- number of the base learners I

Output:
- Final hypothesis hran : X → C computed by the ensemble.

begin
D̂ = F(D, n)
for i = 1 to I
begin

Di = Subspace projection(D̂, k)
hi = L(Di)

end
hran(x) = arg maxt∈C card({i|hi(x) = t})

end.

Figure 1. Random Subspace on Selected Features (RS-SF) ensemble method.

In this work we experiment a combination of the two approaches. The
role of the gene selection stage consists in eliminating noisy or uninfor-
mative genes. Then we can apply random subspace ensembles only with
the remaining more discriminant and informative genes, enhancing the
accuracy of the resulting base learners though aggregation techniques,
while diversity between base learners is maintained by the random choice
of the input subspaces.

Fig. 1 summarizes the proposed method. F denotes a feature selection
algorithm, that selects the n most significant features from the original
d-dimensional input space. Subspace projection is a randomized pro-
cedure that selects, according to the uniform distribution, a k-subset A =
{α1, . . . , αk} from {1, 2, . . . , n}, so defining a projection PA : Rn → Rk,
where PA(x1, . . . , xn) = (xα1 , . . . , xαk

); then it returns as output the new
k-dimensional data set {(PA(xj), tj)|1 ≤ j ≤ m}, where D̂ = {(xj), tj)|1 ≤ j ≤ m}
is the set of the n-dimensional features selected from the original d-
dimensional input space. Every new data set Di obtained through the
iteration of the procedure Subspace projection is given as input to
a learning algorithm L which outputs a classifier hi. Note that, with
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abuse of notation, with hi(x) we ambiguously denote the extension of hi

to the entire Rd space. All the obtained classifiers are finally aggregated
through majority voting.

3. Experiments with the colon adenocarcinoma
gene expression data

To evaluate the feasibility of the RS-SF ensemble method for the
analysis of gene expression data, we considered the colon adenocarci-
noma bio-molecular diagnosis problem. The colon data set is composed
of 62 samples: 40 colon tumor and 22 normal colon tissue samples, with
2000 gene expression data for each sample [Alon, U. et al., 1999].

Main goal of the experiment is the performance comparison of SVMs
trained with subsets of genes chosen through a simple but effective fea-
ture selection method (Golub’s method) [Golub et al., 1999] and RS-SF
ensembles.

3.1 Experimental setup
Regarding preprocessing of data, we used the same techniques illus-

trated in [Alon, U. et al., 1999]. Groups of genes have been selected
ranking the gene’s scores obtained through the Golub’s statistics. The
selection of the genes has been performed using only training data in
order to avoid the selection bias [Ambroise and McLachlan, 2002].

Table 1. Summary of the best results achieved with single SVMs trained on subsets of
genes selected through Golub’s method (Single FS-SVM), RS-SF ensembles of SVMs,
standard random subspace ensembles (RS ensemble), single SVMs without feature
selection, and the average error of the base SVMs that compose the ensemble.

Test Err. St.dev Train Err. St.dev Sens. Spec.

RS-SF ensemble 0.0968 0.0697 0.0727 0.0183 0.9250 0.8636
RS ensemble 0.1290 0.0950 0.0000 0.0000 0.9000 0.8182
Single FS-SVM 0.1129 0.0950 0.0768 0.0231 0.9250 0.8182
Single SVM 0.1774 0.1087 0.0000 0.0000 0.8500 0.7727
Single base SVM 0.1776 0.1019 0.0000 0.0000 —— ——

We considered different random subspaces of dimensionality from 2
to 2n−1, randomly drawn from each 2n-dimensional gene space selected
from the input space through the Golub’s method, while varying n be-
tween 5 and 10. According to Skurichina e Duin [Skurichina and Duin,
2002] we applied linear SVMs as base learners. Indeed they showed
that random subspace ensembles are effective with linear base learners
characterized by a decreasing learning curve (error) with respect to the
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cardinality n, especially when the dimensionality is much larger than the
cardinality. For each ensemble we trained 200 linear SVMs, considering
values of the regularization parameter C between 0.01 and 1000.

We computed for both single SVMs and RS-SF ensembles the test
error and training error, sensibility, specificity and precision through 5-
fold cross validation techniques. Regarding software, we developed new
C++ classes and applications for random subspace ensembles extend-
ing the NEURObjects library [Valentini and Masulli, 2002]. For all the
experiments, we used the C.I.L.E.A. Avogadro cluster of Xeon double
processor workstations [Arlandini, 2004].

3.2 Results
The results show that the best RS-SF ensemble outperforms single

SVMs trained with a subset of selected genes (Single FS-SVM). In fact
we obtained respectively a 0.0968 test error in the first case, and 0.1129
for FS-SVM (Tab. 1). The test error of RS-SF ensemble is consistently
equal or lower than single FS-SVM, independently of the number of the
selected genes, as shown in Fig. 2. In particular the minimum of the test
error with 128 selected genes is obtained with 64-dimensional random
subspace, while with 512 selected genes with 16-dimensional subspaces.
In both considered methods, the sensitivity has the same value from
32 to 128 selected genes, then it decreases for single FS-SVM, while
becomes constant for RS-SF ensembles (Fig. 3). Also the specificity is
better for random subspace ensemble combined with feature selection: a
maximum is achieved with 128 selected genes, and for number of selected
genes larger than 64 RS-SF ensembles show better results than single
FS-SVM (Fig. 3).

The difference between the best RS-SF ensemble and single FS-SVM
is not statistically significant, according to the 5-fold cross validated
t-test [Dietterich, 1998] (Tab. 1). On the contrary it becomes signifi-
cant with standard random subspace ensemble and single SVMs trained
without feature selection. Anyway, considering the accuracy in RS-SF
ensemble and single FS-SVM with respect to the number of the selected
genes, the difference is significant at 0.05 level in most cases (Fig. 2).

4. Conclusions and developments
The results show the applicability of the combined approach of the

random subspace ensemble with feature selection methods, to the anal-
ysis of gene expression data. Anyway we need to perform more ex-
periments with other data sets, to confirm, as may be expected, the
presented results. The proposed approach doesn’t require a specific fea-
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Figure 2. Comparison of the test error with respect to the number of the selected
features between RS-SF ensembles of SVMs and FS-SVMs.
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Figure 3. Comparison of sensitivity and specificity with respect to the number
of the selected features between RS-SF ensembles of SVMs (continuous lines) and
FS-SVMs (dashed lines).
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ture selection method. Regarding this item, we plan to experiment with
other feature selection algorithms.
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