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Multi-label hierarchical prediction methods 
and their application to the automatic 
function prediction of proteins
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Relevant problems in molecular biology and 
medicine can be modeled through ontologies.

An example: the Automatic Function Prediction 
(AFP) problem

Flat vs Hierarchy-aware learning methods

Hierarchical ensemble methods

Perspectives
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An ontology is a data model in a given knowledge domain 
that represents concepts, attributes and relationships 

in the form of a Directed Acyclic Graph (DAG)

A concept

A relationship
between concepts

Attributes may be
associated to 

concepts or relations
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Gene Ontology (GO)
Human Phenotype Ontology (HP)
Mammalian Phenotype Ontology (MP)
Merged Disease vocabulary – MEDIC (OMIM → MeSH)
Chemical Entities of Biological Interest (ChEBI)
Anatomical ontologies (MA, ZFA, XAO)
…

More at  OBO Fundry (The Open Biological and Biomedical Ontologies):
 http://www.obofoundry.org/

A lot of biological applications, e.g. Functional enrichment (Subramanian et al 2005) and 
semantic similarity(Yang et al, 2012).



Bio-ontologies

Gene Ontology 
(Ashburner et al., 2000)
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GO DAG of the BP ontology (S. cerevisiae)

1074 GO classes (nodes) connected by 1804 edges.
 Graph realized through HCGene (Valentini and Cesa-Bianchi, 2008)
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The Human 
Phenotype 
Ontology
 
(Kohler et al., 2014)
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Molecular structure (sub)ontology (ChEBI)
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Classification problems in the context of 
biological ontologies

Ontologies provide predefined taxonomies for several relevant
computational problems, e.g.:
         – Protein Function prediction (GO)
         – Prediction of human gene – abnormal phenotype 
            associations (HP)
         – Prediction of the biological role of small molecules (ChEBI)

Can we design computational methods able to exploit the 
hierarchical and/or the semantic relationships between ontology terms
to provide more robust and accurate predictions?



Ontologies and prediction problems
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AFP is a complex prediction problem characterized by 
several issues:
                                                             

Multi-label hierarchical prediction methods and their application to AFP                                                                    G. Valentini

Different level of evidence for functional annotations: labels at 
different level of reliability
Class frequencies are unbalanced, with positive examples usually 
largely lower than negatives: unbalanced classification
The notion of “negative example” is not univocally determined: 
different strategies to choose negative examples
Construction, selection and normalization of the input data are 
complex and time-consuming: data preparation is as relevant as the 
design of the prediction algorithms
Multiple sources of data available: data integration methods
Data are usually complex and labels incomplete:  classification with 
complex and incomplete data
Large number of functional classes: large multi-class classification
Multiple annotations for each gene: multilabel classification
Hierarchical relationships between functional classes: structured 
multi-label classification
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Different level of evidence for functional annotations: labels at 
different level of reliability
Class frequencies are unbalanced, with positive examples usually 
largely lower than negatives: unbalanced classification
The notion of “negative example” is not univocally determined: 
different strategies to choose negative examples
Multiple sources of data available: multi-source classification
Construction, selection and normalization of the input data are 
complex and time-consuming: data preprations is as relevant as the 
design of the prediction algorithms
Data are usually complex and labels incomplete:  classification with 
complex and incomplete data
Large number of functional classes: large multi-class classification
Multiple annotations for each gene: multilabel classification
Hierarchical relationships between functional classes: structured 
multi-label classification

Can we design efficient computational 
methods able to exploit 

the hierarchical relationships between classes?
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Computational approaches to AFP: 
a simple taxonomy (Valentini, 2014)
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Inference and annotation transfer through sequence 
similarity (Conesa et al 2005, Hamp et al 2013) 

Network-based methods (Chua et al, 2007; Mostafavi et 
al. 2008, Bertoni et al. 2011, Nepusz, Yu and Paccanaro, 
2012) 

Methods based on the joint kernelization of both input 
and output space (Astikainen et al. 2008, Sokolov and 
Ben-Hur, 2010) 

Hierarchical ensemble methods (Guan et al. 2006; 
Obozinski et al, 2008; Schietgat et al. 2010)



Ontologies and prediction problems

                                                             

Hierarchy aware approaches:

Kernel-based structured output methods 
  (Rousu et al. 2006, Sokolov and Ben Hur 2013, Cortes et al. 2014 )
Hierarchical ensemble methods
  (Obozinski et al. 2008,  Cesa-Bianchi et al. 2012, Yu et al. 2014)

Flat predictions:
Advantages: simplicity

Drawbacks:
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Flat vs hierarchy-aware methods
                                                             

Inconsitency

Information loss C1 CnC5C4C3C2

R
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Hierarchical ensemble methods

Step 1: Training of the base classifiers
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D1

LA

C1

D2

LA

C2

Data

Base learning 
algorithm(s)

Classifiers

Step 2: Hierarchical combination of the classifiers
                                                             

R

C1 C2

C3 C4 C5 C6

C7 C8 C9 C10 C11 Cn

class 1 class 2

D3

LA

C3

class 3

D4
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class 4
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State-of-the-art Hierarchical ensemble methods
                                                             

  Most ensembles are conceived for tree-structured 
taxonomies.
(Valentini 2011, Cerri et al. 2011, Paes et al 2012, Cesa-
Bianchi et al 2012, Hernandez et al 2013)

  Only a few for DAG-structured taxonomies.
(Guan et al 2008, Schietgat et al 2010, Yu et al 2015)

  With DAG-structured taxonomies it is difficult to 
achieve  results comparable with flat methods 
(Obozinski et al 2008)

  DAGs are more complex:
 – More parents        – Multiple paths
 – More edges          – Nodes may belong to multiple “levels”

Hierarchical ensemble methods
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 For a recent review on Hierarchical ensemble methods in 
computational biology, see Valentini, 2014
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Two general approaches for hierarchical predictions 
in DAGs
                                                             R

C1 C2

C3 C4 C5 C6

C7 C8 C9 C10 C11 Cn
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C7 C8 C9 C10 C11 Cn

R
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C1 C2

C3 C4 C5 C6

C7 C8 C9 C10 C11 Cn

R

C1 C2

C3 C4 C5 C6

C7 C8 C9 C10 C11 Cn

1) Top-Down

2) Bottom-up

Hierarchical ensemble methods
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R

C1 C2

C3 C4 C5 C6
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C3 C4 C5 C6
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C1 C2

C3 C4 C5 C6

C8 C9 C10

Hierarchical ensemble methods
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negative

positive



Hierarchical ensemble methods
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Consistent and inconsistent predictions
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 Consistent predictions:

 Inconsistent predictions:
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Consistent and inconsistent predictions
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Our proposed approaches
                                                             
HTD-DAG:
Hierarchical 
Top-Down for DAGs

TPR-DAG:
True Path Rule   
for DAGs

Hierarchical ensemble methods
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HTD-DAG – Hierarchical Top-Down ensembles for DAG
                                                             

A simple rule orderly applied to each class/node:

Nodes are processed by level (maximum path length from the root) 
to assure the consistency of the predictions:

are the flat scores for the class i computed by the base classifier 

HTD-DAG

Multi-label hierarchical prediction methods and their application to AFP                                                                    G. Valentini



                                                             

                     Royal Holloway 10th March 2015

Levels must be defined according to the maximum 
distance from the root
                                                             

Levels defined in 
terms of the 
minimum distance 
lead to inconsistent 
predictions

Levels defined in 
terms of the 
maximum distance 
lead to consistent 
predictions

HTD-DAG
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HTD-DAG: the algorithm
                                                             

ComputeMaxDist (G, r)

HTD-DAG scales 
linearly with the 
number of classes  
                              

HTD-DAG
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TPR-DAG: True Path Rule ensembles for DAGs
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TPR-DAG: True Path Rule ensembles for DAG
                                                             

Characterized by a three-step learning strategy:

1. Flat learning of the classes on a per-term basis 
(a set of independent classification problems)

2. Bottom-up step. Bottom to top propagation of 
the positive predictions → improvement of 
sensitivity

3. Top-down step. Top to bottom propagation of 
negative predictions  → improvement of 
precision.

Can be considered an adaptation to DAGs of the 
previously proposed TPR algorithm for tree-
structured taxonomies (Valentini, 2011).

TPR-DAG
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TPR-DAG: Bottom-up step
                                                             

Flat predictions are modified according to a per-level bottom-up 
traversal of the DAG:

Where 
i
 are the “positive” children of i:

(Threshold-Free strategy – TPR-TF)

(Thresholded strategy – TPR-T)

Weighted version of TPR (TPR-W):

TPR-DAG

Multi-label hierarchical prediction methods and their application to AFP                                                                    G. Valentini



                                                             

                     Royal Holloway 10th March 2015

TPR-DAG: Top-Down step
                                                             

A simple rule orderly applied to each class/node (similar to HTD-DAG):

Nodes are processed by level (maximum path length from the root) 
to assure the consistency of the predictions:

are the scores for the class i computed in the bottom-up step

TPR-DAG
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TPR-DAG: the 
bottom-up and 
top-down steps
                                          
                   

TPR-DAG scales 
linearly with the 
number of classes  
                              

TPR-DAG
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TPR-DAG and HTD-DAG provide consistent predictions

TPR-DAG provides consistent predictions:

HTD-DAG provides consistent predictions:
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TPR-DAG and HTD-DAG significantly improve flat 
methods in the protein function prediction problem

A. thaliana: CC ontology (12069 proteins, 422 terms)
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TPR-DAG and HTD-DAG significantly improve flat 
methods in the protein function prediction problem

Bacteria (301 species): BP ontology (17638 proteins, 2462 terms)
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H. sapiens: BP ontology (20257 proteins, 8310 terms) H. sapiens: CC ontology (20257 proteins, 961 terms)

A. thaliana: BP ontology (12069 proteins, 3410 terms) Bacteria (301 species): CC ontology (17638 proteins, 210 terms)
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HTD-DAG significantly improves flat methods in the prediction of human 
gene abnormal phenotype associations

20257 human genes, 4847 HPO terms

G. Valentini, S. Kohler, M. Re, M. Notaro, P.N. Robinson, Prediction of human gene – phenotype 
association by exploiting the hierarchical structure of the Human Phenotype Ontology,
3rd International Work-Conference on Bioinformatics and Biomedical Engineering - IWBBIO 2015,  
Lecture Notes in Bioinformatics, vol. 9043, pp. 66-77, Springer (2015)
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Scalability of HTD and TPR-DAG
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HTD-DAG and TPR-DAG are both linear in time
with respect the number of terms (classes) 
of the ontology
Each example (protein) can be processed 
one at a time (or in constant chunks):  
(sub)linear complexity in space

Big ontologies and 
large number of 
proteins can be 
processed with 
ordinary computers

Example: 
On going application to big 
multi-species protein function prediction problems:

 more than 400 organisms
 1.5 millions of proteins  (core of the STRING database)
 Construction of a multi-species network including
  hundreds of millions of edges (intra and inter-species) 
 Scalable vertex-centric and secondary memory-based computation
 Thousands of GO functional classes to be predicted
 Scalable hierarchical correction of the predictions
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Relevant problems in computational biology can be modeled through 
hierarchical ontologies

HTD-DAG and TPR-DAG: 
     a) scale linearly 
     b) provide consistent predictions 
     c) improve flat predictions 
     d) can be applied to big data

Developments and future work: 
       a) Are hierarchical ensembles meta-learning tools that can improve 
any flat approach? → More theoretical insights and experiments with 
different base learners 
       b) Application in the context of complex MAFP problems
       c) TPR-DAG is a family of algorithms: experimenting with new variants
       d) Design of novel TPR algorithms working on the trade-off 
sensitivity/precision.
       e) Exploiting the hierarchy just in the first step (e.g.: multi-task    
learning) 
      Multi-label hierarchical prediction methods and their application to AFP                                                                    G. Valentini

Conclusions and future developments
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