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* Relevant problems in molecular biology and
medicine can be modeled through ontologies.

* An example: the Automatic Function Prediction
(AFP) problem

* Flat vs Hierarchy-aware learning methods
* Hierarchical ensemble methods

* Perspectives
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Ontologies

« N

An ontology is a data model in a given knowledge domain
that represents concepts, attributes and relationships
in the form of a Directed Acyclic Graph (DAG)
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Bio-Ontologies

éene Ontology (GO)
» Human Phenotype Ontology (HP)

» Mammalian Phenotype Ontology (MP)

» Merged Disease vocabulary — MEDIC (OMIM — MeSH)
» Chemical Entities of Biological Interest (ChEBI)

» Anatomical ontologies (MA, ZFA, XAO)

a L B

http://www.obofoundry.org/

~

More at OBO Fundry (The Open Biological and Biomedical Ontologies):

/

A lot of biological applications, e.g. Functional enrichment (Subramanian et al 2005) and

semantic similarity(Yang et al, 2012).
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Bio-ontologies
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1074 GO classes (nodes) connected by 1804 edges.
Graph realized through HCGene (Valentini and Cesa-Bianchi, 2008)
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Molecular structure (sub)ontology (ChEBI)
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Classification problems in the context of
biological ontologies

~

» Ontologies provide predefined taxonomies for several relevant
computational problems, e.q.:
— Protein Function prediction (GO)
— Prediction of human gene — abnormal phenotype
associations (HP)
\ — Prediction of the biological role of small molecules (ChEBI) /

1

4 )

s Can we design computational methods able to exploit the
hierarchical and/or the semantic relationships between ontology terms

fo provide more robust and accurate predictions?
- /
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AFP is a complex prediction problem characterized by
several issues:

» Different level of evidence for functional annotations: /abels at
different level of reliability

» Class frequencies are unbalanced, with positive examples usually
largely lower than negatives: unbalanced classification

* The notion of “negative example” is not univocally determined:
different strategies to choose negative examples

» Construction, selection and normalization of the input data are
complex and time-consuming: data preparation is as relevant as the
design of the prediction algorithms

» Multiple sources of data available: data integration methods

» Data are usually complex and labels incomplete: classification with
complex and incomplete data

» Large number of functional classes: large multi-class classification
» Multiple annotations for each gene: multilabel classification

» Hierarchical relationships between functional classes: structured
multi-label classification
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AFP is a complex prediction problem characterized by
several issues:

@

@ / \

Can we design efficient computational
methods able to exploit
the hierarchical relationships between classes?

L /

» Hierarchical relationships between functional classes: structured
multi-label classification

Multi-label hierarchical prediction methods and their application to AFP G. Valentini



Ontologies and prediction problems Royal Holloway 10" March 2015

Computational approaches to AFP:
a simple taxonomy (Valentini, 2014)

4 N

» Inference and annotation transfer through sequence
similarity (Conesa et al 2005, Hamp et al 2013)

» Network-based methods (Chua et al, 2007; Mostafavi et
al. 2008, Bertoni et al. 2011, Nepusz, Yu and Paccanaro,
2012)

» Methods based on the joint kernelization of both input

and output space (Astikainen et al. 2008, Sokolov and
Ben-Hur, 2010)

> Hierarchical ensemble methods (Guan et al. 2006;
Obozinski et al, 2008; Schietgat et al. 2010)

\l /
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Flat vs hierarchy-aware methods

~ Flat predictions: P
Advantages: simplicity
s Inconsitency A}///J\
DraWbaCkS: *i N N 4 0N N P N
CcC1 C2 ¢Cc3 ¢4 ¢
\ @ Information loss L A A A A @

~ Hierarchy aware approaches:

» Kernel-based structured output methods

(Rousu et al. 2006, Sokolov and Ben Hur 2013, Cortes et al. 2014 )
» Hierarchical ensemble methods

(Obozinski et al. 2008, Cesa-Bianchi et al. 2012, Yu et al. 2014)
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Step 1: Training of the base classifiers

class 1 class 2 class 3 class 4 class n
’ ’ ’ ’ ’ - | Data
( _ / L A .| Base learning
I I I Q I/ I algorithm(s)
»::_C1 C2 ) \E/B/; ;5314/; T Cn < Classifiers
Step 2 Hlerarchlcal combmatlon of the. classmers
e Lo IR .
I' /‘ﬁ /‘ N \\\
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1 C11 C
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State-of-the-art Hierarchical ensemble methods

* Most ensembles are conceived for tree-structured

taxonomies.
(Valentini 2011, Cerri et al. 2011, Paes et al 2012, Cesa-
Bianchi et al 2012, Hernandez et al 2013)

* Only a few for DAG-structured taxonomies.
(Guan et al 2008, Schietgat et al 2010, Yu et al 2015)

* With DAG-structured taxonomies it is difficult to

achieve results comparable with flat methods
(Obozinski et al 2008)

> DAGs are more complex:
— More parents — Multiple paths

— More edges — Nodes may belong to multiple “levels”

For a recent review on Hierarchical ensemble methods in
computational biology, see Valentini, 2014
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Two general approaches for hierarchical predictions
in DAGs .

1) Top-Down

2) Bottom-up %

Multi-label hierarchical prediction methods and their application to AFP G. Valentini



Hierarchical ensemble methods Royal Holloway 710" March 2015

Multi-label hierarchical prediction methods and their application to AFP G. Valentini



Royal Holloway 10" March 2015

Consistent and inconsistent predictions

Consistent predictions:
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Consistent and inconsistent predictions

Consistent predictions:

Multi-label hierarchical prediction methods and their application to AFP G. Valentini



Hierarchical ensemble methods Royal Holloway 10" March 2015

Our proposed approaches

HTD-DAG:
Hierarchical
Top-Down for DAGs

TPR-DAG:
True Path Rule
for DAGs

! P | ||
f ,f"'. f"\

Sl
OO QC)C)
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HTD-DAG - Hierarchical Top-Down ensembles for DAG

A simple rule orderly applied to each class/node:

Ui if i€ root(QG)
Yi ‘= minjEPﬂ-T(i} gj‘ if lninjEpar(i) gj < yz
U; otherwise

Ui € [0: 1] are the flat scores for the class i computed by the base classifier

Nodes are processed by level (maximum path length from the root)
to assure the consistency of the predictions:

y is consistent <= Vi € V. j € par(i) = y; > v;

Multi-label hierarchical prediction methods and their application to AFP G. Valentini
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Levels must be defined according to the maximum
distance from the root

Levels defined in
terms of the

minimum distance
lead to inconsistent 0.7 o o 0.8

predictions

Min. distance

|1||2||3||4||3|%
l0.9]/0.]j0.8)o.a0.7| 0.6

Max. distance
1)(2]3]4]|5|/6/|[7|/8
Levels defined in 10.9{0.3|/0.8|0.3||0.3||0.6/|0.3]|0.3]
terms of the
maximum distance
lead to consistent
predictions

Q0.7
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HTD-DAG: the algorithm 75 paG scales

Input: linearly with the
G=<V B> - number of classes
-y =< U1, Y2, .- ., Yy > (flat predictions)
begin algorithm
01:  A. dist := ComputeMaxDist (G,root(G)) * "~~~ ~ |
02: B. Per-level top-down visit of G- |
03: g’raat{@} -= ﬂrﬂat{ﬂ} |
04: for each d from 1 to £ do 1
05: Ng = {i|dist(z) = d} ComputeMaxDist (G, 7)
06: for each: € N, do begin algorithm
07: + o= M jepar(i) Yj 01: s = Topological.Sort (G)
08: if (z < 4) 02:  dist[r] :=0;
09: Yi =T 03: for each kin V' \ {r} do
10: 61‘_‘5'3 ) 04: dist[k] := —cc
11: Yi .= Vi 05: for each k from 1 to |V| do
12: end for 06 i = s
13: end for 07: for each (i,j) € E do
end algorithm 08: if dist[j] < dist[i] +1
Du_tput:_ ) ) 09: dist[j| .= dist[i] + 1
- Y =< Y, Y2 -5 Yy & end algorithm

Output:

- The distance vector dist.
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TPR-DAG: True Path Rule ensembles for DAGs
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TPR-DAG: True Path Rule ensembles for DAG

Characterized by a three-step learning strategy:

1. Flat learning of the classes on a per-term basis
(a set of independent classification problems)

2. Bottom-up step. Bottom to top propagation of
the positive predictions — improvement of
sensitivity

3. Top-down step. Top to bottom propagation of
negative predictions — improvement of
precision.

Can be considered an adaptation to DAGs of the
previously proposed TPR algorithm for tree-
structured taxonomies (Valentini, 2011).
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TPR-DAG: Bottom-up step

Flat predictions are modified according to a per-level bottom-up
traversal of the DAG:

Yi = 1+‘@1 yz+§J3

Where ¢_are the “positive” children of i:
¢; = {Jj € child(i)|y; > y;} (Threshold-Free strategy — TPR-TF)

¢; :={j € child(i)|y; >t} (Thresholded strategy — TPR-T)

Weighted version of TPR (TPR-W):.
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TPR-DAG: Top-Down step

A simple rule orderly applied to each class/node (similar to HTD-DAG):

f ~ . .
Ui it 7 € root(G)
Ui := § Mijepar() ¥ E ¥ > minjepar) U;
| Ui otherwise

y; € |0, 1] are the scores for the class i computed in the bottom-up step

Nodes are processed by level (maximum path length from the root)
to assure the consistency of the predictions:

y is consistent <= Vi € V. j € par(i) = y; > v;

Multi-label hierarchical prediction methods and their application to AFP G. Valentini
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Input:

-G=<V,FE =

-V ={1,2,...,|V|}. 1 is the root node
- .\!} == ﬂl?'ﬁzs - '-ﬂ'|'|r’| =, ﬁl‘l = [D* 1]
begin algorithm

01: A. Compute Vi € V' the max distance from root(G):
02: E':={e'leec E, e = —e}
03: G =< V,E" >
TPR-DAG: the 04: dist := Bellman.Ford(G’, root(G"))
05: B. Per-level bottom-up visit of G
- 06: for each d from max(dist) to 0 do
bOttom up and 07: Ng = {i|dist(i) = d}
08: for each i € N do
top-down Ste ps 09: Select ¢, according to a positive selection strategy
10 i = et + s, )
11: end for
12: end for
13: C. Per-level top-down visit of G-
14: 71 1= 11
15: for each d from 1 to max(dist) do
16: Ng = {i|dist(i) = d}
17: for each i c Ny do
18: T 1= Ml cpariz) Uy
19: if (z < §:)
20: ;.=
21: else
22: Y = fﬁ
TPR-DAG scales 23: end for
. . 24: end for
linearly with the end algorithn
number of classes outpue:
-y =< Y2y Uy 2
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TPR-DAG and HTD-DAG provide consistent predictions

TPR-DAG provides consistent predictions:

Theorem 1. Given a DAG G =< V. E >, a level function v that assigns to
each node its mazrimum path length from the root, a set of predictions y =<
Y1, Y2, - -, Y| > generated by the bottom-up step of the TPR algorithm for each
class associated with its corresponding node i € {1,...,|V|}, the top-down step
of the TPR algorithm assures that for the set of ensemble predictions y =<
Y1, Y2, - -+, Yjv| > the following property holds:

VieV, jepar(i) = y; > Ui

HTD-DAG provides consistent predictions:

Theorem 2. Given a DAG G =< V., F >, a level function 1 that assigns to
each node 1ts mazimum path length from the root and the set of HI'D-DAG

flat predictions y =< y1.Y2..... Y| >. the top-down hierarchical correction
of the HT'D-DAG algorithm assures that the set of ensemble predictions y =<
Ut Y2. . ... Y| > satisfies the following property:

VieV, j€epar(i) = y; > v

Multi-label hierarchical prediction methods and their application to AFP G. Valentini
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TPR-DAG and HTD-DAG significantly improve flat
methods in the protein function prediction problem

o8 —=— flat
w . -8 —y —=— hid
c i i —— tprW
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TPR-DAG and HTD-DAG significantly improve flat
methods in the protein function prediction problem

= a —a— flat
"""-qahmh —=— htd
T— —-— tprW
B —— max
\ —— and
o | —— or
:% o
o
Qif
- Bacteria (301 species): BP ontology (17638 proteins, 2462 terms)

I I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Multi-label hierarchical prediction methods and their application to AFP G. Valentini



HTD-DAG and TPR-DAG

Royal Holloway 10" March 2015

= Fo— fat
z 7] e
\_\_& .
H— ma
H“-‘M\ —=— and
- e— or
= ) ..,
= -
H""‘-«._\_\_
5 -
= -,
n -, -
£ 2 .
= -
=] o-
a- D
e .
e S .
- o N B —
g S e S N
. + + - + " - by e e
+ + BT, R
+
g |
L=
T T T T T T T T T T
01 oz 03 0.4 <1 [T oy oA o 1
Raaall

w
m 4
o
& —+ flat
—— hid
7 - ™~ -
o —— max
—<— and
—=— or
a .
o -H-\-b'-\._
ey
8 | H
¢ 8 o ""“H._H
% B - e,
O “
£ oa | e e
= —ro.,
—B.. -
™ W,
E ] ! o > “a P '3 - ey
= + ’ B-. i,
+ + . -- .
+ + LS
+ —— e
o 4 o
o + =
2 |
o
T T T T T T T T T T
0 0.2z 0.2 04 0B 0.& or 0e ] 1
Aecall

Fradsa

=
= " a— Rat
[ l— hid
-y —
i
i [ =
2 A =
-
El ,, - TR ]
o H o -0
£ o - k:' # @
¥ - + + + + ¥
5 - +
S .
U!I IZII.E I:IIS Ui{- IZ:E IZIIE- I:l!i" ul.a IZ:!I ‘:
Fiaazall
H. sapiens: CC ontology (20257 proteins, 961 terms)
g 4
2 - -~ . "
e )
Z A - = o o - r.\\\'
a —O i - o *i_ )
— -
g S . N v + + N ~
E _'_ + +. ; "
3 e
o e
=7 a— flat o+
—— hid
[ tpff
—— max
7 e
g .
l]!l IZII.E I:II3 l];- IZ:E IZIIE- [l!i" l]:! IZ:! ‘:
Riacall

A. thaliana: BP ontology (12069 proteins, 3410 terms)

Bacteria (301 species): CC ontology (17638 proteins, 210 terms)

Multi-label hierarchical prediction methods and their application to AFP

G. Valentini




HTD-DAG and TPR-DAG Royal Holloway 10" March 2015

HTD-DAG significantly improves flat methods in the prediction of human
gene abnormal phenotype associations

0.25
|

20257 human genes, 4847 HPO terms
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—2&  max
—— and
—=— or

0.20
|

015
|

Precision

040
|

0.05
|

0.00
|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

G. Valentini, S. Kohler, M. Re, M. Notaro, P.N. Robinson, Prediction of human gene — phenotype
association by exploiting the hierarchical structure of the Human Phenotype Ontology,

3rd International Work-Conference on Bioinformatics and Biomedical Engineering - IWBBIO 2015,
Lecture Notes in Bioinformatics, vol. 9043, pp. 66-77, Springer (2015)
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Scalability of HTD and TPR-DAG

~» HTD-DAG and TPR-DAG are both linear in time
with respect the number of terms (classes)

of the ontology

» Each example (protein) can be processed ﬁ

one at a time (or in constant chunks):
(sub)linear complexity in space

- Big ontologies and
large number of
proteins can be
processed with

~ordinary computers

- Example:
On going application to big
multi-species protein function prediction problems:
» more than 400 organisms
» 1.5 millions of proteins (core of the STRING database)
» Construction of a multi-species network including
hundreds of millions of edges (intra and inter-species)
» Scalable vertex-centric and secondary memory-based computation
» Thousands of GO functional classes to be predicted
@ Scalable hierarchical correction of the predictions

Multi-label hierarchical prediction methods and their application to AFP G. Valentini
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Conclusions and future developments

» Relevant problems in computational biology can be modeled through
hierarchical ontologies

» HTD-DAG and TPR-DAG:
a) scale linearly
b) provide consistent predictions
c) improve flat predictions
d) can be applied to big data

» Developments and future work:

a) Are hierarchical ensembles meta-learning tools that can improve
any flat approach? — More theoretical insights and experiments with
different base learners

b) Application in the context of complex MAFP problems

c) TPR-DAG is a family of algorithms: experimenting with new variants

d) Design of novel TPR algorithms working on the trade-off
sensitivity/precision.

e) Exploiting the hierarchy just in the first step (e.g.: multi-task
learning)

Multi-label hierarchical prediction methods and their application to AFP G. Valentini
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