

What is a Random Walk

- Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor;
- Then we select a neighbor of this node and move to it, and so on;
- The (random) sequence of nodes selected in this way is a *random walk* on the graph

An example

0	1	0
0	0	1
1	1	0

0	1	0
0	0	1
1/2	1/2	0

Adjacency matrix W

Transition matrix Q

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview

An example

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview

Random walks and Markov chains

- A Markov chain describes a stochastic process over a set of states according to a transition probability matrix
- Markov chains are memoryless
- Random walks correspond to Markov chains:
 - The set of states is the set of nodes in the graph
 - The elements of the transition probability matrix are the probabilities to follow and edge from one node to another

Random Walk algorithm

Input:

- the adjacency matrix **W** of a graph $G = \langle V, E \rangle$
- A subset of nodes Vc having property C
- Initialization of nodes: if $v \in V_c$ then $p_0(v) = 1 / |V_c|$ else $p_0(v) = 0$
- Set transition matrix: Q = D⁻¹W
 where D is a diagonal matrix with

$$d_{ii} = \sum_{j} w_{ij}$$

• Iteratively update until convergence or until t=k $\mathbf{p}_t = \mathbf{Q}^T \mathbf{p}_{t-1}$

Output: **p**t

Random Walk with restart

```
Input:
- W: weight matrix of the graph
- V_M \subset V: genes belonging to a cancer module M
- \epsilon: convergence parameter
- \theta: restart probability
begin algorithm
01: for each i \in V_M p_i^o := 1/V_M
02: for each i \notin V_M p_i^o := 0
03: for each i \in V d_{ii} := \sum_{i} w_{ij}
04: Q := D^{-1}W
05: t := 0
06: repeat
07: t := t + 1
07: p^t = (1 - \theta) Q^T p^{t-1} + \theta p^o
08: until (||p^t - p^{t-1}|| < \epsilon)
09: for each i \in V
         p_i^t := p_i^t / \sum_i p_i^t
10:
end algorithm.
Output: the probability vector p^t
```

Random Walk algorithm to rank genes w.r.t to a given "property" C

- A subset V_c of a set of genes V have "a priori" known property C
- Can we rank the other genes in the set $V \setminus V_c$ w.r.t their likelihood to belong to V_c ?

Random walk algorithm

C can be e.g. a disease (gene disease prioritization) or a GO term (gene function prediction)

Label propagation algorithm

Algorithm 11.1 Label propagation (Zhu and Ghahramani [2002])

```
Compute affinity matrix \mathbf{W} from (11.1)

Compute the diagonal degree matrix \mathbf{D} by \mathbf{D}_{ii} \leftarrow \sum_{j} W_{ij}

Initialize \hat{Y}^{(0)} \leftarrow (y_1, \dots, y_l, 0, 0, \dots, 0)

Iterate

1. \hat{Y}^{(t+1)} \leftarrow \mathbf{D}^{-1} \mathbf{W} \hat{Y}^{(t)}

2. \hat{Y}_l^{(t+1)} \leftarrow Y_l

until convergence to \hat{Y}^{(\infty)}

Label point x_i by the sign of \hat{y}_i^{(\infty)}
```

- Examples can be split in labeled and unlabeled: $\hat{Y} = (\hat{Y}_l, \hat{Y}_u)$
- The algorithm tries to maximizes the consistency of the unlabeled examples with the topology of the graph
- The algorithm forces the labels on the labeled data: $(\hat{Y}_l = Y_l)$
- The algorithm iterates till to the convergence

Label spreading algorithm

Algorithm 11.3 Label spreading (Zhou et al. [2004])

```
Compute the affinity matrix \mathbf{W} from (11.1) for i \neq j (and \mathbf{W}_{ii} \leftarrow 0)
Compute the diagonal degree matrix \mathbf{D} by \mathbf{D}_{ii} \leftarrow \sum_{j} W_{ij}
Compute the normalized graph Laplacian \mathcal{L} \leftarrow \mathbf{D}^{-1/2}\mathbf{W}\mathbf{D}^{-1/2}
Initialize \hat{Y}^{(0)} \leftarrow (y_1, \dots, y_l, 0, 0, \dots, 0)
Choose a parameter \alpha \in [0, 1)
Iterate \hat{Y}^{(t+1)} \leftarrow \alpha \mathcal{L} \hat{Y}^{(t)} + (1-\alpha)\hat{Y}^{(0)} until convergence to \hat{Y}^{(\infty)}
Label point x_i by the sign of \hat{y}_i^{(\infty)}
```

- Similar to the Label propagation algorithm, but:
- The normalized graph Laplacian is used instead
- The algorithm does not force the labeled data (useful with noisy data)
- At each step a contribution of the initial labeling is considered (convex combination)
- It can be shown that a different cost criterion is minimized

Examples split in labeled and unlabeled: $\hat{Y} = (\hat{Y}_l, \hat{Y}_u)$

Examples split in labeled and unlabeled: $\hat{Y} = (\hat{Y}_l, \hat{Y}_u)$

A. Consistency with the initial labeling:
$$\sum (\hat{y}_i - y_i)^2 = ||\hat{Y}_l - Y_l||^2.$$

Examples split in labeled and unlabeled: $\hat{Y} = (\hat{Y}_l, \hat{Y}_u)$

A. Consistency with the initial labeling:

$$\sum_{i=1}^{l} (\hat{y}_i - y_i)^2 = ||\hat{Y}_l - Y_l||^2.$$

B. Consistency with the geometry of the data (internal consistency):

$$\frac{1}{2} \sum_{i,j=1}^{n} \mathbf{W}_{ij} (\hat{y}_i - \hat{y}_j)^2 = \frac{1}{2} \left(2 \sum_{i=1}^{n} \hat{y}_i^2 \sum_{j=1}^{n} \mathbf{W}_{ij} - 2 \sum_{i,j=1}^{n} \mathbf{W}_{ij} \hat{y}_i \hat{y}_j \right) \\
= \hat{Y}^{\mathsf{T}} (\mathbf{D} - \mathbf{W}) \hat{Y} \\
= \hat{Y}^{\mathsf{T}} L \hat{Y}$$

Examples split in labeled and unlabeled: $\hat{Y} = (\hat{Y}_l, \hat{Y}_u)$

A. Consistency with the initial labeling: $\sum (\hat{y}_i)$

$$\sum_{i=1}^{l} (\hat{y}_i - y_i)^2 = ||\hat{Y}_l - Y_l||^2.$$

B. Consistency with the geometry of the data (internal consistency):

$$\frac{1}{2} \sum_{i,j=1}^{n} \mathbf{W}_{ij} (\hat{y}_i - \hat{y}_j)^2 = \frac{1}{2} \left(2 \sum_{i=1}^{n} \hat{y}_i^2 \sum_{j=1}^{n} \mathbf{W}_{ij} - 2 \sum_{i,j=1}^{n} \mathbf{W}_{ij} \hat{y}_i \hat{y}_j \right)$$

$$= \hat{Y}^{\top} (\mathbf{D} - \mathbf{W}) \hat{Y}$$

$$= \hat{Y}^{\top} L \hat{Y}$$

Putting together A and B we can obtain a cost function to be minimized:

$$C(\hat{Y}) = \|\hat{Y}_l - Y_l\|^2 + \mu \hat{Y}^{\top} L \hat{Y} + \mu \epsilon \|\hat{Y}\|^2$$

Examples split in labeled and unlabeled: $\hat{Y} = (\hat{Y}_l, \hat{Y}_u)$

A. Consistency with the initial labeling:

$$\sum_{i=1}^{l} (\hat{y}_i - y_i)^2 = ||\hat{Y}_l - Y_l||^2.$$

B. Consistency with the geometry of the data (internal consistency):

$$\frac{1}{2} \sum_{i,j=1}^{n} \mathbf{W}_{ij} (\hat{y}_i - \hat{y}_j)^2 = \frac{1}{2} \left(2 \sum_{i=1}^{n} \hat{y}_i^2 \sum_{j=1}^{n} \mathbf{W}_{ij} - 2 \sum_{i,j=1}^{n} \mathbf{W}_{ij} \hat{y}_i \hat{y}_j \right) \\
= \hat{Y}^{\top} (\mathbf{D} - \mathbf{W}) \hat{Y} \\
= \hat{Y}^{\top} L \hat{Y}$$

Putting together A and B we can obtain a cost function to be minimized:

$$C(\hat{Y}) = \|\hat{Y}_l - Y_l\|^2 + \mu \hat{Y}^{\top} L \hat{Y} + \mu \epsilon \|\hat{Y}\|^2$$

It can be shown that previous network-based algorithms minimize a quadratic cost function.