nl'.

FIu-:-iE.E-tE'

s

L

(Q rapl

What 1s a Random Walk

* Given a graph and a starting point (node), we
select a neighbor of it at random, and move to
this neighbor;

* Then we select a neighbor of this node and
move to 1t, and so on;

* The (random) sequence of nodes selected 1n
this way 1s a random walk on the graph

An example

0 1 0 [1 0

0 0 1 0 0 1

1 1 0 1/2 1/% 0
Adjacency matrix W Transition matrix Q

1
1/2
1 1

1/2

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overvieg/

An example

=0, A

‘ﬁ@ |
1

1/2

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview

An example 3

'|'=O, A 1':1, AB
S 1 1
1/2 .{ 1/2
u: 1 1\
12 N

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overvieg/

An example 3

'|'=O, A 1':1, AB

Th s

1/2 1/2
1 1

t=2, ABC

li/ \
1/2
1
/2

1\- Y

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overvieg/

=0, A

L 3 1
1

\- ,

An example ‘ﬁ@

Y
)

t=1, AB

. -

il

s
Sk

3,

ABCA

ABCB

{i\-

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overviey/

Random walks and Markov
chains

* A Markov chain describes a stochastic
process over a set of states according to a
transition probability matrix

* Markov chains are memoryless

* Random walks correspond to Markov

chains:
* The set of states is the set of nodes in the graph

* The elements of the transition probability matrix
are the probabilities to follow and edge from one

node to another

Random Walk algorithm

Input:
- the adjacency matrix W of a graph G=<V,E>
- A subset of nodes Vc having property C

e |nitialization of nodes:
if veV, then po(v) =1 /|Vc| else p,(v)=0

e Set transition matrix: Q= D1W
where D is a diagonal matrix with

* |teratively update until convergence or until t=k
p:= Q'pr1

Output: pt

Random Walk with restart

Input:

- W weight matrix of the graph

- Var C V' genes belonging to a cancer module M
- €: convergence parameter

- 0: restart probability

begin algorithm

01: for eachi e Vy p?:=1/Vy

02: for eachi ¢ Vi pf =0

03: for eachi €V dﬁ:::E:jugj

04: Q:=D'W

05: t:=0

06: repeat

07: ti=t+1

07: pl=(1-0)Q p" 1 +6p°

08: until (||p' — p~ | < ¢)
09: for eachéEEIF

10: pi =i/ 221

end algorlthm

Output: the probability vector pf

Random Walk algorithm to rank genes
w.r.t to a given “property” C
* Asubset V, of a set of genes V have “a priori” known
property C
« Can we rank the other genes in the set V' \ V. w.r.t their
likelihood to belong to V., ?

o - Random walk
algorithm

C can be e.q. a disease
(gene disease
prioritization) or a GO
term (gene function
prediction)

Label propagation algorithm

Algorithm 11.1 Label propagation (Zhu and Ghahramani [2002])

Compute affinity matrix W from (11.1)
Compute the diagonal degree matrix D by Di; — > i Wi

Initialize Y(®) — (y1,....41,0,0,...,0)

Iterate
L YU+ — prtwy ™
2.7, vy,

until convergence to y (o0)
Label point x; by the sign of gt':‘xj'

Examples can be split in labeled and unlabeled: Y = (1;,Y3)

The algorithm tries to maximizes the consistency of the unlabeled
examples with the topology of the graph

The algorithm forces the labels on the labeled data: (Y1 = Y))

The algorithm iterates till to the convergence

Label spreading algorithm

Algorithm 11.3 Label spreading (Zhou et al. [2004])

Compute the affinity matrix W from (11.1) for i # j (and Wi; — 0)
Compute the diagonal degree matrix D by Dy — > i Wij

Compute the normalized graph Laplacian L «— D~ Y/2wD~Y/?
Initialize Y (©) — (y1,...,91,0,0,...,0)

Choose a parameter a € [0, 1)

Iterate Y1) — aLY® + (1 — a)Y© until convergence to Y ()

Label point x; by the sign of Qt[00)

' Similar to the Label propagation algorithm, but:

' The normalized graph Laplacian is used instead

' The algorithm does not force the labeled data (useful with
noisy data)

' At each step a contribution of the initial labeling is considered
(convex combination)

' 1t can be shown that a different cost criterion is minimized

The previous semi-supervised algorithms
minimize a quadratic cost function

Examples split in labeled and unlabeled: Y = (1;,Y,,)

The previous semi-supervised algorithms
minimize a quadratic cost function

Examples split in labeled and unlabeled: Y = (17.1,)

]
A. Consistency with the initial labeling: > (i — i) =V - Yi*

i=1

The previous semi-supervised algorithms
minimize a quadratic cost function

Examples split in labeled and unlabeled: Y = (17.1,)

z
A. Consistency with the initial labeling: Z(;}f —)% = ||V — %

=1

B. Consistency with the geometry of the data (internal consistency):

1
2 > Wi — i) = ()Y 73 T Wij —2 Z Wi 0 uj)

Lo —

1,7=1 i,7=1
= }T(D—‘W}}
— Y'LY

The previous semi-supervised algorithms
minimize a quadratic cost function

Examples split in labeled and unlabeled: Y = (17.1,)
x

A. Consistency with the initial labeling: Z(I}f —y)? =Y — v

=1

B. Consistency with the geometry of the data (internal consistency):

1
LY WoGi- i = YTWZ
1_.‘r 1 = i,7=1
— }T(D—‘W)’l
= YTLY

Putting together A and B we can obtain a cost function to be minimized:

C(Y) = Vi =YVi|l> + pY TLY + pe[Y[]?

The previous semi-supervised algorithms
minimize a quadratic cost function

Examples split in labeled and unlabeled: Y = (17.1,)

z
A. Consistency with the initial labeling: Z(;}f —)% = ||V — %

=1

B. Consistency with the geometry of the data (internal consistency):

1, \
Z“su Ui — ;)% = \)Y‘hyw?}_zzﬂffﬂhui}

1_? 1 i,7=1
— Y (D-W)Y
— Y'TLY

Putting together A and B we can obtain a cost function to be minimized:

C(Y) = Vi =YVi|l> + pY TLY + pe[Y[]?

It can be shown that previous network-based algorithms minimize a
quadratic cost function.

