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What 1s a Random Walk

* Given a graph and a starting point (node), we
select a neighbor of it at random, and move to
this neighbor;

* Then we select a neighbor of this node and
move to 1t, and so on;

* The (random) sequence of nodes selected 1n
this way 1s a random walk on the graph
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Random walks and Markov
chains

* A Markov chain describes a stochastic
process over a set of states according to a
transition probability matrix

* Markov chains are memoryless

* Random walks correspond to Markov

chains:
* The set of states is the set of nodes in the graph

* The elements of the transition probability matrix
are the probabilities to follow and edge from one

node to another



Random Walk algorithm

Input:
- the adjacency matrix W of a graph G=<V,E>
- A subset of nodes Vc having property C

e |nitialization of nodes:
if veV, then po(v) =1 /|Vc| else p,(v)=0

e Set transition matrix: Q= D1W
where D is a diagonal matrix with

* |teratively update until convergence or until t=k
p:= Q'pr1

Output: pt



Random Walk with restart

Input:

- W weight matrix of the graph

- Var C V' genes belonging to a cancer module M
- €: convergence parameter

- 0: restart probability

begin algorithm

01:  for eachi e Vy p?:=1/Vy

02:  for eachi ¢ Vi pf =0

03: for eachi €V dﬁ:::E:jugj

04: Q:=D'W

05: t:=0

06:  repeat

07: ti=t+1

07: pl=(1-0)Q p" 1 +6p°

08: until (||p' — p~ | < ¢)
09: for eachéEEIF

10: pi =i/ 221

end algorlthm

Output: the probability vector pf



Random Walk algorithm to rank genes
w.r.t to a given “property” C
* Asubset V, of a set of genes V have “a priori” known
property C
« Can we rank the other genes in the set V' \ V. w.r.t their
likelihood to belong to V., ?

o - Random walk
algorithm

C can be e.q. a disease
(gene disease
prioritization) or a GO
term (gene function
prediction)




Label propagation algorithm

Algorithm 11.1 Label propagation (Zhu and Ghahramani [2002])

Compute affinity matrix W from (11.1)
Compute the diagonal degree matrix D by Di; — > i Wi

Initialize Y(®) — (y1,....41,0,0,...,0)

Iterate
L YU+ — prtwy ™
2.7, vy,

until convergence to y (o0)
Label point x; by the sign of gt':‘xj'

Examples can be split in labeled and unlabeled: Y = (1;,Y3)

The algorithm tries to maximizes the consistency of the unlabeled
examples with the topology of the graph

The algorithm forces the labels on the labeled data: (Y1 = Y))

The algorithm iterates till to the convergence



Label spreading algorithm

Algorithm 11.3 Label spreading (Zhou et al. [2004])

Compute the affinity matrix W from (11.1) for i # j (and Wi; — 0)
Compute the diagonal degree matrix D by Dy — > i Wij

Compute the normalized graph Laplacian L «— D~ Y/2wD~Y/?
Initialize Y (©) — (y1,...,91,0,0,...,0)

Choose a parameter a € [0, 1)

Iterate Y1) — aLY® + (1 — a)Y© until convergence to Y ()

Label point x; by the sign of Qt[ 00)

' Similar to the Label propagation algorithm, but:

' The normalized graph Laplacian is used instead

' The algorithm does not force the labeled data (useful with
noisy data)

' At each step a contribution of the initial labeling is considered
(convex combination)

' 1t can be shown that a different cost criterion is minimized



The previous semi-supervised algorithms
minimize a quadratic cost function

Examples split in labeled and unlabeled: Y = (1;,Y,,)



The previous semi-supervised algorithms
minimize a quadratic cost function

Examples split in labeled and unlabeled: Y = (17.1,)
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The previous semi-supervised algorithms
minimize a quadratic cost function

Examples split in labeled and unlabeled: Y = (17.1,)
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The previous semi-supervised algorithms
minimize a quadratic cost function

Examples split in labeled and unlabeled: Y = (17.1,)
x

A. Consistency with the initial labeling: Z(I}f —y)? =Y — v

=1

B. Consistency with the geometry of the data (internal consistency):

1
LY WoGi- i = YTWZ
1_.‘r 1 = i,7=1
— }T(D—‘W)’l
= YTLY

Putting together A and B we can obtain a cost function to be minimized:

C(Y) = Vi =YVi|l> + pY TLY + pe[Y[]?




The previous semi-supervised algorithms
minimize a quadratic cost function

Examples split in labeled and unlabeled: Y = (17.1,)

z
A. Consistency with the initial labeling: Z(;}f — )% = ||V — %

=1

B. Consistency with the geometry of the data (internal consistency):

1, \
Z“su Ui — ;)% = \)Y‘hyw?}_zzﬂffﬂhui}

1_? 1 i,7=1
— Y (D-W)Y
— Y'TLY

Putting together A and B we can obtain a cost function to be minimized:

C(Y) = Vi =YVi|l> + pY TLY + pe[Y[]?

It can be shown that previous network-based algorithms minimize a
quadratic cost function.




