

Lezione 6

Circuiti digitali notevoli: ALU

F. Pedersini

Dipartimento di Scienze dell'Informazione Università degli Studi di Milano

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6-1/30

ALU: Arithmetic-Logic Unit

Esegue le <u>operazioni aritmetico-logiche</u>

```
+ , - , \times , \div , ... and , or , not , \times , \times , \times , \times , ...
```

- Normalmente integrata nel processore
 - ➤ Inizio anni '90 → introduzione con il nome di co-processore matematico
 - ➤ Le ALU non compaiono solamente nei micro-processori
- E' un circuito combinatorio
 - > Rappresentabile come insieme di funzioni logiche
- Opera su parole (N bit)

6502, 8080, Z-80
 MIPS, 80386:
 PowerPC G5, Athlon64:
 64 bit

- Struttura modulare
 - > Blocchi funzionali da <u>1 bit</u>, replicati <u>N volte</u>
 - > Blocchi da 4 bit

Struttura a 2 livelli di una ALU

Struttura ALU per il bit k-esimo:

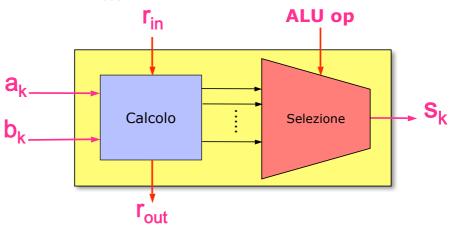
Ingressi: Operandi: a_k, b_k

Riporto in ingresso: r_{in}

Selettore operazione: ALUop

❖ Uscite: Risultato: s_k

Riporto in uscita: r_{out}



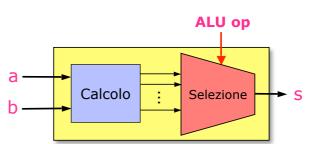
A.A. 2008/09

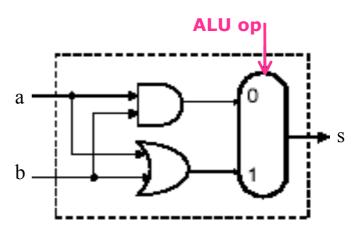
© A. Borghese, F. Pedersini – DSI, UniMI

L6-3/30

Progettazione della ALU

- * Porta AND / OR
 - > Selezionabile
- * Componenti:
 - > 1 porta AND
 - > 1 porta OR
 - > 1 Multiplexer (MUX)

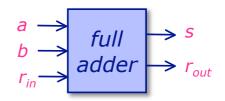




FULL Adder (1 bit)

Gestisce anche il riporto in ingresso

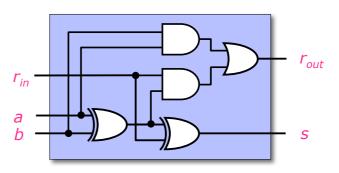
3 ingressi: a, b, r_{IN}
 2 uscite: s, r_{OUT}



а	b	r _{in}	r _{out}	S
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

$$s = \overline{abr_{in}} + a\overline{br_{in}} + \overline{abr_{in}} + a\overline{br_{in}} + abr_{in} = a \oplus b \oplus r_{in}$$

$$r_{out} = ab\overline{r_{in}} + \overline{abr_{in}} + a\overline{br_{in}} + abr_{in} = ab + (a \oplus b)r_{in}$$



A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6-5/30

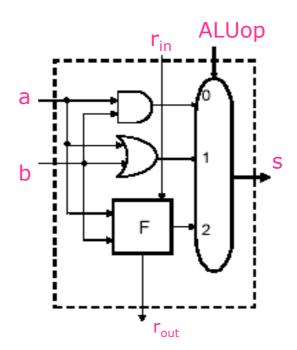
ALU 1 bit

Operazioni:

- * OR, AND, somma
- * ALUop: 2 bit

00: s = a and b 01: s = a or b

10: $s = a + b + r_{in}$



Sommario

- ALU su 1 bit: operazioni logiche e somma
- ALU su 32 bit: implementazione di sottrazione, confronto e test di uguaglianza

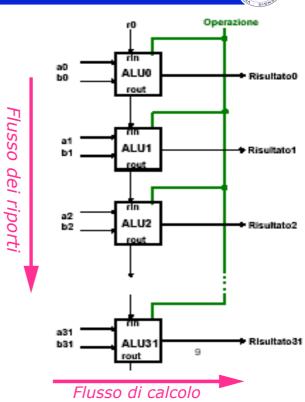
A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6-7/30

ALU a 32 bit

- Come collegare N ALU a 1 bit per ottenere ALU a N bit?
- * ALU a 32 bit:
- * ALU in parallelo, ma...
 - > Propagazione dei riporti
 - Limite alla velocità di calcolo



Sottrazione

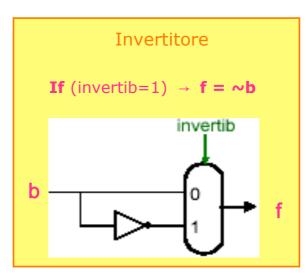
❖ Sottrazione → addizione dell'opposto:

$$a - b = a + (-b)$$

- Posso farlo con gli stessi circuiti dell'addizione, ma devo costruire
 b a partire da b
- Complemento a 2:

$$-b = not(b) + 1$$

- > Inversione logica: circuito di inversione
- > Aggiunta della costante "1": pongo $r_{in}(0) = 1$



A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6-9/30

ALU - bit i-esimo

Operazioni: AND, OR, +, -

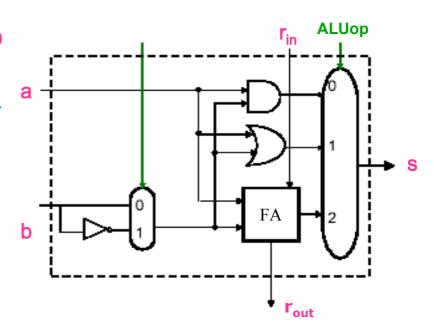
Propagazione riporti: $r_{in}(i) = r_{out}(i-1)$ i = 1, 2, 3, ...31

Addizione:

$$r_{in}(0) = 0$$
, invertiB = 0

Sottrazione:

$$r_{in}(0) = 1$$
, invertiB = 1



Comparazione (confronto)

* Comparazione:

if
$$a < b$$
 then $s = 1$ ($s = 0...01$)

> Fondamentale per dirigere il flusso di esecuzione (test, cicli...)

```
if (a < b) \rightarrow s = [0 0 0 ... 0 1] else \rightarrow s = [0 0 0 ... 0 0]
```

* Implementazione:

```
> if ALUop = "comparazione"
then s(i) = 0, i = 1, 2, 3, ... 31
if (a < b)  s(0) = 1
else s(0) = 0
```

Devo:

- > Imporre tutti i bit di \mathbf{s} (tranne \mathbf{s}_0) a $\mathbf{0}$;
- ➤ Calcolare s₀ in base alla condizione a<b

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6-11/30

Come sviluppare la comparazione?

DEA: in complemento a 2, il MSB della somma (bit di segno) =
 1 per numeri negativi → s_{MSB} = 1

$$a < b \rightarrow a - b < 0 \rightarrow s_{MSR} = 1$$

Implementazione:

Nuovo ingresso: LESS

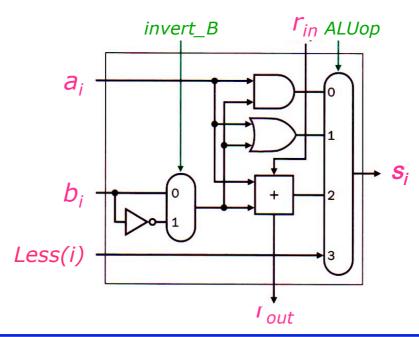
IF: ALUop = "comparazione"
$$\rightarrow$$
 s_i = LESS_i

- Operazioni:
 - ➤ Calcolare la differenza (a b) (senza mandarla in uscita)
 - ➤ Inviare l'uscita del sommatore del MSB a LESS di ALU₀

$$S_{31} \rightarrow LESS_0$$

> Questa uscita viene chiamata segnale di set

ALUi con comparatore



A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6- 13/30

Overflow

- Esempio decimale:
 - \rightarrow a + b = c dove a,b,c tutti codificati con 2 cifre decimali
 - \Rightarrow a = 19, b = 83
 - \rightarrow Overflow: 19 + 83 = (1)02
- Supponendo il MSB dedicato al bit di segno...
 - > 019 + 083 = 102
 - ➤ L'overflow modifica il MSB (in compl. a 2, dedicato al segno)
- Overflow nella somma quando:

```
a + b = s, a > 0, b > 0 \rightarrow MSB di a e b = 0, MSB di s = 1

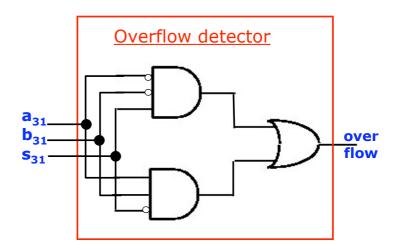
a + b = s, a < 0, b < 0 \rightarrow MSB di a e b = 1, MSB di s = 0
```

Si può avere overflow con a e b di segno opposto ?

Circuito di riconoscimento dell'overflow

- 3 ingressi, tutti dalla ALU31:
 - ightharpoonup MSB di a, b e somma: a_{31} b_{31} s_{31}

a ₃₁	b ₃₁	S ₃₁	overflow
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0



A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6- 15/30

ALU_31 con Overflow detector

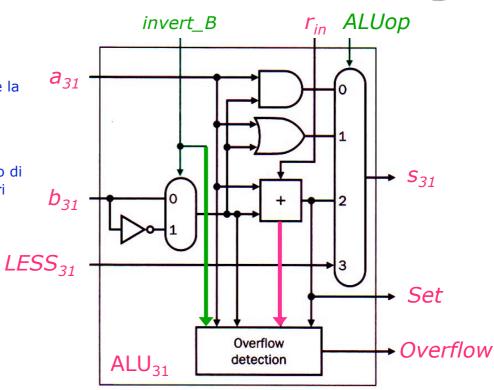
Altri ingressi:

invert_B:

per gestire anche la differenza tra numeri discordi

 $r_{out}(31)$:

per gestire il caso di overflow tra interi "unsigned"



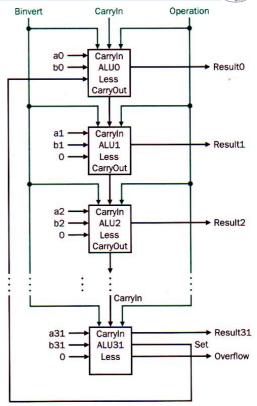
A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6- 16/30

ALU completa a 32 bit

- InvertiB e r_{IN}(0) sono lo stesso segnale
- Si può ancora ottimizzare



A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6- 17/30

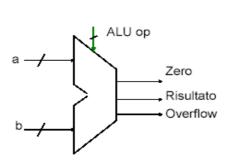
Test di uguaglianza

Esempio: istruzione Assembly:

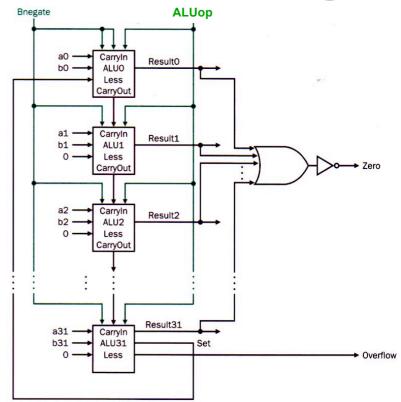
if
$$(rs - rt) = 0$$
, salta

- * Operazioni necessarie
 - > Impostare una differenza.
 - > Effettuare l' OR di tutti i bit somma.
 - > Uscita dell' OR = 0 → i due numeri sono uguali
- * Operazioni possibili:
 - > AND
 - > OR
 - > Somma / Sottrazione
 - > Comparazione
 - > Test di uguaglianza

ALU a 32 bit: struttura finale



ALUop	funzione	
000	and	
001	or	
010	+ (add)	
110	- (sub)	
111	set less than	

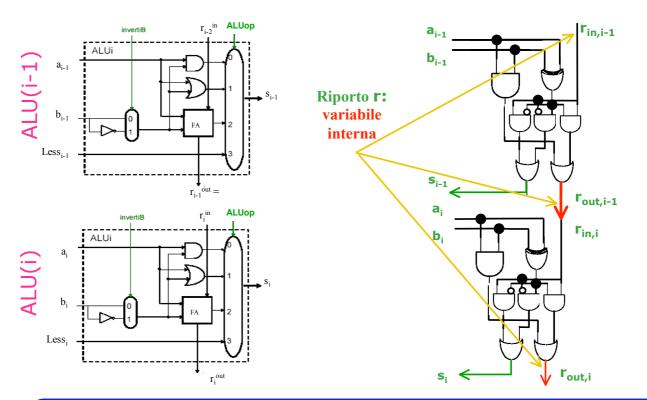


A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6- 19/30

Propagazione del riporto



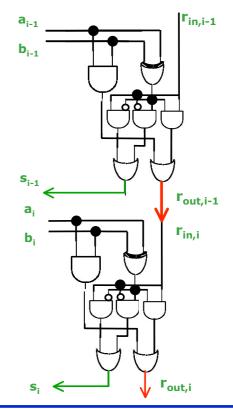
A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6- 20/30

Cammini critici

- * Per ogni stadio:
 - \gt Somma: $C_s = 3$
 - ightharpoonup Riporto: $C_R = 3$
- Per N stadi:
 - \gt Somma: $C_s = 3$
 - ightharpoonup Riporto: $C_R = 3 \cdot N$
 - $N = 4 \ bit \rightarrow C_R = 12$



A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

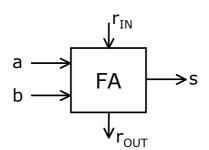
L6-21/30

I problemi del full-adder

- ❖ Full Adder con propagazione di riporto è lento
 - > Il riporto si propaga sequenzialmente
 - + caratteristica dell'algoritmo di calcolo
 - ➤ La commutazione dei circuiti non è istantanea
 - + caratteristica fisica dei dispositivi
- Soluzioni
 - > modificare i dispositivi
 - > modificare l'algoritmo
- Sommatori ad anticipazione di riporto

Anticipazione di riporto

- Anticipazione di riporto (carry look-ahead)
 - > Approccio per diminuire la latenza della somma
 - ightharpoonup Propagazione di riporto: $t_L = 3N$
- * Principio di funzionamento:
 - > Si genera un riporto in uscita quando ho <u>almeno due "1" sui tre</u> <u>ingressi</u> (r_{in}, a, b)



A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6-23/30

Propagazione e generazione

- ❖ Ho riporto quando ho <u>almeno 2</u> dei 3 ingressi (r_{in}, a, b) = "1"
- * Due casi possibili:
 - GENERAZIONE: g_i
 Viene generato un riporto allo stadio i, per qualsiasi r_{in}, se:

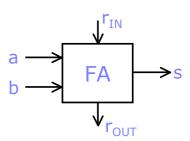
$$g_i = a_i b_i$$
;

$$g_i = 1 \rightarrow r_{i,out} = 1$$

PROPAGAZIONE: p_i
Viene generato un riporto allo stadio i, se r_{in} = 1 e (a OR b) = 1

$$\mathbf{p}_{i} = (\mathbf{a}_{i} + \mathbf{b}_{i});$$

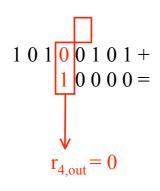
$$p_i r_{i,in} = 1 \rightarrow r_{i,out} = 1$$



Esempio

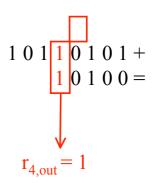
Calcolo: r_{4,out}

$$ightharpoonup$$
 supponiamo $\mathbf{r}_{0,in} = \mathbf{0}$



Propagazione:

$$p_4r_{3,out} = (a_4+b_4)r_{3,out} = 1$$



Generazione: $g_4 = a_4b_4 = 1$

$$r_{4,out} = (a_4 + b_4)r_{3,out} + a_4b_4$$

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6-25/30

Sviluppo della funzione logica riporto

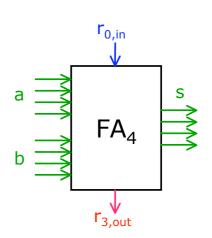
Dato che:

$$r_{i,out} = a_i b_i + (a_i + b_i) r_{i,in} = r_{i-1,out} = r_{i,in}$$

= $g_i + p_i r_{i,in}$

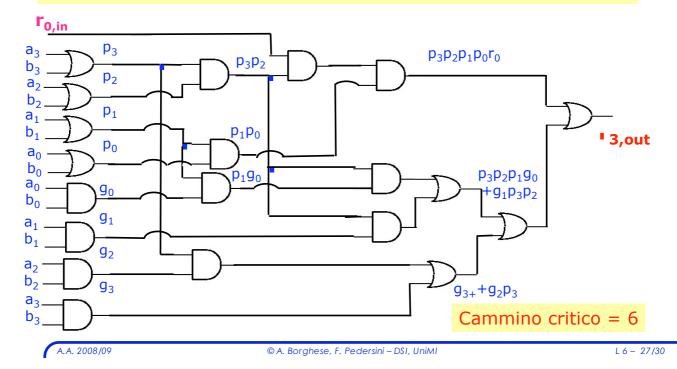
❖ Ricavo r_{3,out} come funzione degli ingressi: a_i , b_i , r_{in,0}:

$$\begin{split} \mathbf{r}_{0,\text{out}} &= \mathbf{g}_0 + \mathbf{p}_0 \cdot \mathbf{r}_{0,\text{in}} \\ \mathbf{r}_{1,\text{out}} &= \mathbf{g}_1 + \mathbf{p}_1 \mathbf{r}_{0,\text{out}} = \mathbf{g}_1 + \mathbf{p}_1 \mathbf{g}_0 + \mathbf{p}_1 \mathbf{p}_0 \mathbf{r}_{0,\text{in}} \\ \mathbf{r}_{2,\text{out}} &= \mathbf{g}_2 + \mathbf{p}_2 \mathbf{r}_{1,\text{out}} = \mathbf{g}_2 + \mathbf{p}_2 (\mathbf{g}_1 + \mathbf{p}_1 \mathbf{g}_0 + \mathbf{p}_1 \mathbf{p}_0 \mathbf{r}_{0,\text{in}}) \\ &= \mathbf{g}_2 + \mathbf{p}_2 \mathbf{g}_1 + \mathbf{p}_2 \mathbf{p}_1 \mathbf{g}_0 + \mathbf{p}_2 \mathbf{p}_1 \mathbf{p}_0 \mathbf{r}_{0,\text{in}} \\ \mathbf{r}_{3,\text{out}} &= \mathbf{g}_3 + \mathbf{p}_3 \mathbf{r}_{2,\text{out}} = \\ &= \mathbf{g}_3 + \mathbf{p}_3 (\mathbf{g}_2 + \mathbf{p}_2 \mathbf{g}_1 + \mathbf{p}_2 \mathbf{p}_1 \mathbf{g}_0 + \mathbf{p}_2 \mathbf{p}_1 \mathbf{p}_0 \mathbf{r}_{0,\text{in}}) = \\ &= \mathbf{g}_3 + \mathbf{p}_3 \mathbf{g}_2 + \mathbf{p}_3 \mathbf{p}_2 \mathbf{g}_1 + \mathbf{p}_3 \mathbf{p}_2 \mathbf{p}_1 \mathbf{g}_0 + \mathbf{p}_3 \mathbf{p}_2 \mathbf{p}_1 \mathbf{p}_0 \cdot \mathbf{r}_{0,\text{in}} \end{split}$$



Anticipazione di riporto (4 bit)

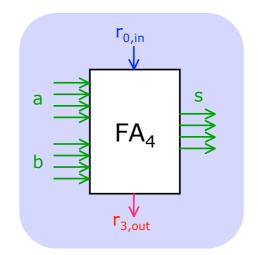
$$r_{3,out}$$
 = $g_3 + p_3 r_2 = g_3 + p_3 (g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 r_{0,in}) =$
= $g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 \cdot r_{0,in}$



Addizionatori modulari

- * Moduli elementari, collegabili in cascata.
 - Complessità del circuito tollerata per piccoli n
 (es. n=4)
- * Cammino critico C:
 - M moduli da 4 bit: $\mathbf{C} = \mathbf{6} \cdot \mathbf{M}$ $\mathbf{N} = 16 \text{ bit } \rightarrow \mathbf{M} = \mathbf{N}/4$ $\rightarrow \mathbf{C} = \mathbf{6} \cdot \mathbf{N}/4 = \mathbf{24}$
 - > A propagazione di riporto: N = 16 bit

$$\rightarrow$$
 C = 3·N = 48



Struttura sommatore a blocchi

- ♦ Vogliamo 32 bit → 8 sommatori elementari
 - > Come collegarli tra loro?

$$r_3 = g_3 + p_3 r_2 =$$

$$= g_3 + p_3 (g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 r_0) =$$

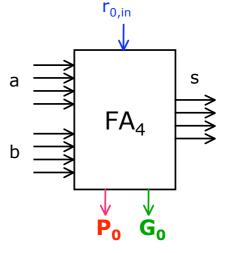
$$= (g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0) + p_3 p_2 p_1 p_0 \cdot r_0 =$$

$$= G_0 + P_0 \cdot r_0$$

dove:

$$\mathbf{P_0} = p_3 p_2 p_1 p_0$$

$$\mathbf{G_0} = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0$$

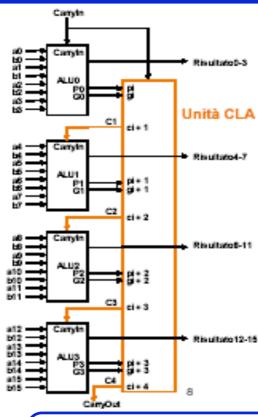


A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6- 29/30

Struttura di un sommatore su 16 bit



$$C_1 = G_0 + P_0 \cdot r_0$$

$$C_2 = G_1 + P_1 \cdot C_1 =$$

= $G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot r_0$

$$C_3 = G_2 + P_2 \cdot C_2 =$$

= $G_2 + P_2 \cdot G_1 + P_2 \cdot P_1 \cdot G_0 +$
+ $P_2 \cdot P_1 \cdot P_0 \cdot r_0$

$$\begin{aligned} r_{out} &= C_4 = G_3 + P_3 \cdot C_3 = \\ &= G_3 + P_3 \cdot G_2 + P_3 \cdot P_2 \cdot G_1 + \\ &+ P_3 \cdot P_2 \cdot P_1 \cdot G_0 + P_3 \cdot P_2 \cdot P_1 \cdot P_0 \cdot r_0 \end{aligned}$$

Cammino critico = 6+6 = 12

- CLA + prop: 6M = 24
- Prop: 3N = 48

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L6- 30/30