

Lezione 4

I circuiti digitali: dalle funzioni logiche ai circuiti

Proff. A. Borghese, F. Pedersini

Dipartimento di Scienze dell'Informazione Università degli Studi di Milano

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 1/35

Sommario

- * Funzioni logiche
- Semplificazione algebrica
- La prima forma canonica (SoP)
 - > Implementazione circuitale mediante PLA o ROM.
- La seconda forma canonica (PoS)

Proprietà degli operatori logici

	AND	OR
Identità	$1 \cdot x = x$	0 + x = x
Elemento nullo	$0 \cdot x = 0$	1 + x = 1
Idempotenza	$x \cdot x = x$	x + x = x
Inverso	$x \sim x = 0$	$x + \sim x = 1$
Commutativa	$x \cdot y = y \cdot x$	x + y = y + x
Associativa	$(x\cdot y)\ z=x\ (y\cdot z)$	(x+y)+z=x+(y+z)
	AND rispetto OR	OR rispetto ad AND
Distributiva	$x \cdot (y+z) = x \cdot y + x \cdot z$	$x + y \cdot z = (x+z) \cdot (x+y)$
Assorbimento	$x \cdot (x + y) = x$	$x + x \cdot y = x$
De Morgan	xy = x + y	$x + y = x \cdot y$

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 3/35

Proprietà di assorbimento

I:
$$A \cdot (A+B) = A$$

 $A + AB = A$

Dim:

$$A(A+B) = AA + AB = A + AB = A(1+B) = A \cdot 1 = A$$
 c.v.d.

II:
$$A + \sim A \cdot B = A + B$$

 $A \cdot (\sim A + B) = A \cdot B$

Dim:

Proprietà distributiva di OR / AND:

$$A + \sim A \cdot B = (A + \sim A) \cdot (A + B)$$

Sviluppando il prodotto:

$$(A + B) \cdot (A + \sim A)$$
 = $AA + A(\sim A) + BA + B(\sim A) =$
= $A + AB + (\sim A)B =$

Raccogliendo B:
$$= A + (A + \sim A)B = A + B$$
 c.v.d.

Funzione logica / circuito logico

* Funzione logica:

$$f: \mathbf{B}^n \to \mathbf{B}$$

- > Funzione booleana di **n** variabili booleane
- > Può essere rappresentata come un'opportuna combinazione di operatori elementari (NOT, AND, OR)
- ➤ Definita per tutte le 2ⁿ combinazioni delle variabili (ingressi)
- * Espressione:

$$\mathbf{Y} = f(x_1, x_2, \dots, x_n)$$

- > Funzione booleana di **n** variabili booleane
- > Può essere rappresentata come un'opportuna combinazione di operatori elementari (NOT, AND, OR)
- ➤ Definita per tutte le 2ⁿ combinazioni delle variabili (ingressi)
- Tabella di verità (Truth Table, TT)
 - > Definizione della funzione per **elenco** di tutti i valori possibili delle variabili.
- Circuito logico
 - > Uscita (booleana) = funzione logica di **n** ingressi (variabili) booleane
 - > Può essere realizzata come un'opportuna combinazione di porte logiche elementari (not, and, or, nand, nor)

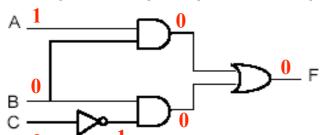
A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 5/35

Funzione / circuito / tab. verità

F = (A and B) or (B and not(C))



3 ingressi: F = f(A,B,C)

 \rightarrow 2³ = 8 combinazioni

Tabella di verità

АВС	A and B	B and not(C)	F
0 0 0	0	0	0
0 0 1	0	0	0
0 1 0	0	1	1
0 1 1	0	0	0
1 0 0	0	0	0
1 0 1	0	0	0
1 1 0	1	1	1
1 1 1	1	0	1

Esempio di semplificazione algebrica

$$F = \overline{A} \cdot B \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C =$$

- raccolgo: $B \cdot \overline{C}$

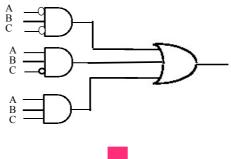
$$= (\overline{A} + A) \cdot B \cdot \overline{C} + A \cdot B \cdot C =$$

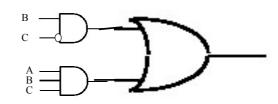
- inverso: $\overline{A} + A = 1$

$$= 1 \cdot B \cdot \overline{C} + A \cdot B \cdot C =$$

- identità: $(1 \cdot B = B)$

$$=\!\!B\cdot\overline{C}+A\cdot B\cdot C$$





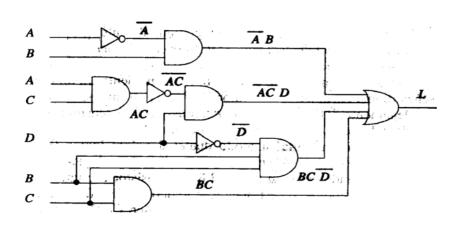
A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 7/35

Esempio – rappresentazione 1

$$L = \overline{A}B + \overline{AC}D + BC + BC\overline{D}$$



Α	В	С	D	L
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Manipolazione algebrica

Applichiamo DeMorgan :
$$\left\{ \frac{\overline{AB} = \overline{A} + \overline{B}}{\overline{A + B}} = \overline{A} \cdot \overline{B} \right\}$$

$$L = \overline{AB} + \overline{ACD} + BC + BC\overline{D} =$$

$$= \overline{A} + \overline{B} + \overline{AC} + \overline{D} + \overline{B} + \overline{C} + \overline{BC} + D =$$

$$= \overline{(A + \overline{B})(AC + \overline{D})(\overline{B} + \overline{C})(\overline{BC} + D)} =$$

$$= \overline{(A + \overline{B})(AC + \overline{D})(\overline{B} + \overline{C})(\overline{B} + \overline{C} + D)}$$

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 9/35

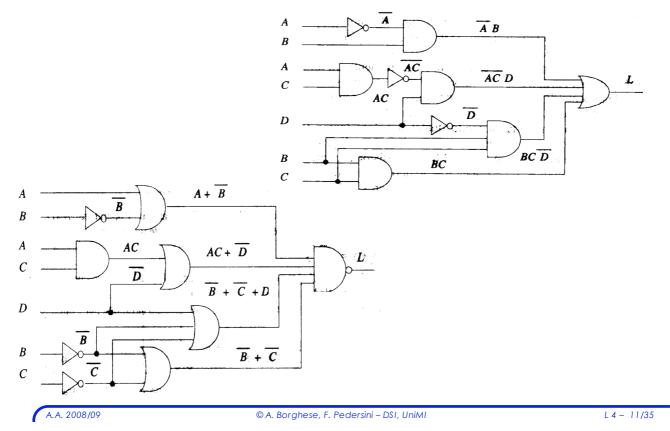
Esempio – rappresentazione 2

$$L = \overline{(A + \overline{B})(AC + \overline{D})(\overline{B} + \overline{C} + D)(\overline{B} + \overline{C})}$$

$$A = \overline{B}$$

$$A =$$

Esempio: le 2 rappresentazioni equivalenti



Semplificazione di funzioni

Espressioni equivalenti

- > 2 espressioni si dicono <u>equivalenti</u> se hanno la <u>stessa tabella di</u> verità
- Quale è la "migliore"?
 - > La più semplice
 - ➤ La più "veloce"

Metodi di semplificazione

- > Sfruttando le proprietà dell'algebra Booleana
 - + Sulle espressioni logiche
- > Mappe di Karnaugh
 - ◆ Sulle tabelle di verità

Funzione: espressione / tabella di verità

espressione logica ↔ tabella delle verità

F = (A AND B) OR (B AND NOT(C))

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	<u>1</u>
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	<u>1</u>
1	1	1	<u>1</u>

$$F = 1$$
 se e solo se:

$$A = 0$$
 AND $B = 1$ AND $C = 0$

$$OR$$

$$A = 1$$
 AND $B = 1$ AND $C = 0$

$$OR$$

$$A = 1$$
 AND $B = 1$ AND $C = 1$

$$F = A \cdot B + B \cdot \overline{C} = \overline{ABC} + AB\overline{C} + ABC$$

A.A. 2008/09

© A. Borghese, F. Pedersini - DSI, UniM

L4 - 13/35

La prima forma canonica

$$F = A \cdot B + B \cdot \overline{C} = \overline{A}B\overline{C} + AB\overline{C} + ABC$$

Implicante:

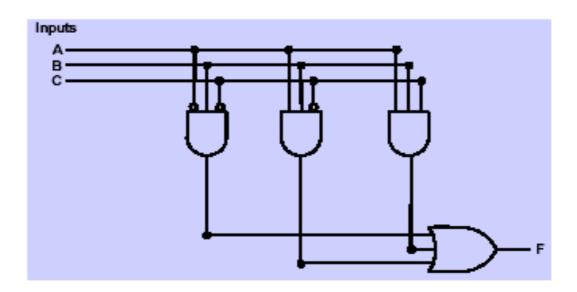
Prodotto delle variabili (in forma naturale o negata) per le quali la funzione vale 1

Mintermine m_i :

implicante che contiene tutte le *n* variabili della funzione (e.g. ABC).

Prima forma canonica (SoP):
$$F = \sum_{j=1}^{Q} m_j$$
, $Q \le 2^n$

$$F = \sim AB \sim C + AB \sim C + ABC$$



A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 15/35

Prima forma canonica: Sum-of-Products (SoP)

- Forma universale mediante la quale è possibile rappresentare qualunque funzione booleana.
 - Non è una forma ottima, ma un punto di partenza per l'ottimizzazione
- Si basa su componenti caratterizzanti la struttura della funzione (mintermini), che esprimono le condizioni logiche di verità (1) della funzione
- Mintermine, m_i:
 - > Funzione booleana a **n** ingressi che **vale 1** in corrispondenza della **sola i-esima configurazione di ingresso**
 - ➤ Per *n* variabili, al più 2ⁿ mintermini
 - ➤ Implementabile mediante un AND ad n ingressi

Prima forma canonica di una funzione (SoP): la somma dei suoi mintermini

Qualunque funzione è esprimibile in forma canonica:

```
Z(A,B,C,D) = AC + BC + \sim A \sim B \sim C =
= A(B+ \sim B)C(D+ \sim D) + (A+\sim A)BC(D+\sim D) + \sim A \sim B \sim C(D+\sim D) =
= ABCD + A \sim BCD + ABC \sim D + A \sim BC \sim D +
+ ABCD + \sim ABCD + ABC \sim D + \sim ABC \sim D +
+ \sim A \sim B \sim C \sim D + \sim A \sim B \sim CD
```

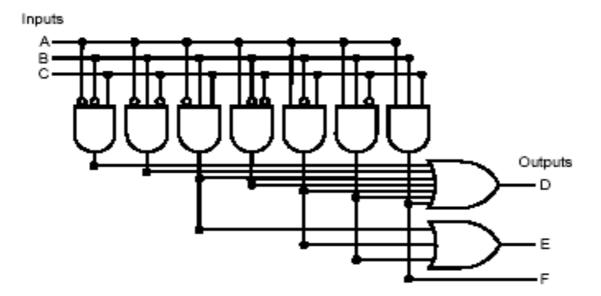
➤ La stessa espressione si può ricavare a partire dalla tabella di verità

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 17/35

SoP a più uscite



Esercizio: Ricavare la funzione in forma di tabella della verità

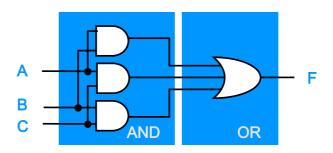
A.A. 2008/09

Esercizio: funzione maggioranza

- 3 ingressi, 1 uscita
 - 1. Costruzione tabella di verità o espressione logica
 - 2. Trasformazione a forma SOP
 - 3. Eventuale semplificazione

Α	В	U	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$F(A,B,C) = \overline{A}BC + A\overline{B}C + AB\overline{C} + AB\overline{C} = \overline{A}BC + ABC = \overline{A}BC + \overline{A}BC = \overline{A}BC = \overline{A}BC + \overline{A}BC = \overline{A}BC + \overline{A}BC = \overline{A}BC + \overline{A}BC = $
$= \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC + ABC + ABC =$
$=AB(C+\overline{C})+AC(B+\overline{B})+BC(A+\overline{A})=$
= AB + AC + BC



A.A. 2008/09

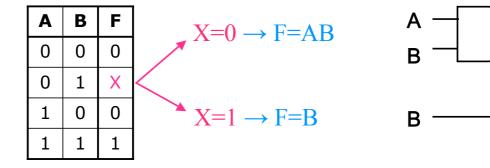
© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 19/35

Uscite indifferenti di una funzione logica

Situazione tipica in sintesi (progetto) di funzioni/circuiti logici:

- Per alcune combinazioni degli ingressi, il valore assunto dall'uscita è INDIFFERENTE
 - > Simbolo: X
- Come si risolve?
 - > Si sceglie il caso che rende il circuito più semplice



Dalla SoP al circuito

- Dalla forma canonica (somma di mintermini) è facile passare al circuito:
 - Ogni mintermine si realizza con una porta AND
 - ➤ La somma dei mintermini si realizza con una porta **OR**
- Implementazione <u>regolare</u>
 - > Solo due livelli di porte
 - ➤ Tempo di commutazione: 2 * t_{GATE}
- Blocchi generali personalizzabili (PLA, ROM)
 - > purché ci sia un numero sufficiente di componenti elementari

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 21/35

Tipi di circuiti che implementano SOP

PLA: Programmable Logic Array

 Matrici regolari AND e OR in successione, personalizzabili dall'utente.

ROM: Read Only Memory

 Circuiti ad-hoc che implementano una particolare funzione in modo irreversibile.

PLA (Programmable Logic Array)

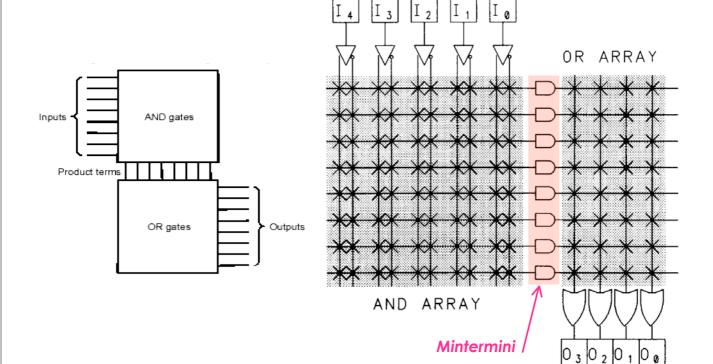
- La matrice degli AND ha *n* linee di ingresso
 - Ciascuna porta ha a disposizione 2n segnali:
 n ingressi + n ingressi negati
- L'utente fornisce la matrice che dice quale linea entra in quale porta AND
 - > Crea la matrice dei mintermini, bruciando in ingresso alle porte AND le linee che non servono.
- Le uscite della matrice AND entrano nella matrice OR con linee definite dall'utente
 - > Matrice di programmazione OR
 - > Si utilizza una porta OR per ogni funzione.

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 23/35

Struttura di una PLA



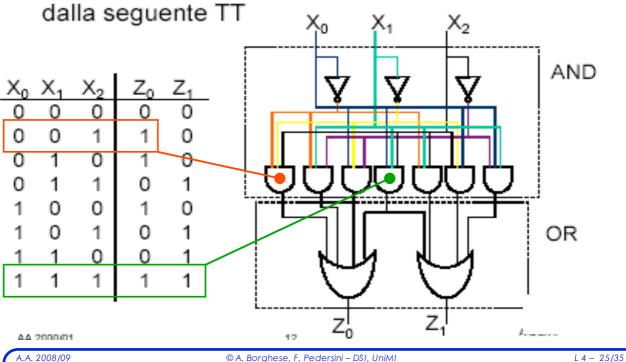
A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 24/35

Esempio di PLA

Realizzare con un PLA la funzione descritta



Esercizi sulla PLA

- Realizzare mediante PLA con 3 ingressi:
 - > la funzione maggioranza.
 - la funzione che vale 1 se e solo se 1 solo bit di ingresso vale 1
 - > un decoder
 - la funzione che vale 0 se l'input è pari, 1 se dispari
 - ➤ la funzione che calcola i multipli di 3 (con 4 ingressi)

Rappresentazione circuitale mediante ROM

- Read-Only Memory, memoria di sola lettura.
 - > Funge anche da modulo combinatorio a uscita multipla.
- * n linee di ingresso, m linee di uscita (ampiezza)
 - ➤ a ciascuna delle 2ⁿ (altezza) configurazioni di ingresso (parole di memoria) è associata permanentemente una combinazione delle m linee di uscita
 - > Ad ogni <u>parola</u> corrisponde un <u>mintermine</u>, definito dal suo indirizzo di memoria
- L' ingresso seleziona la parola da leggere di m bit
 - > Il **contenuto della parola** di memoria corrisponde all'**uscita** relativa a tale mintermine.

Decoder $n \rightarrow 2^n$ seguito da una matrice di m porte OR

A.A. 2008/09

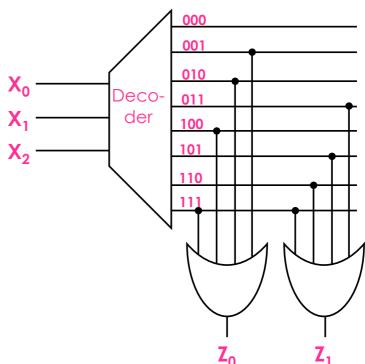
© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 27/35

Esempio di ROM

 Realizzare con una ROM la funzione descritta dalla seguente tabella di verità:

X _o	X ₁	X ₂	Z _o	Z ₁
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1



Forme canoniche

- Esiste un metodo per ricavare automaticamente un circuito che implementi una tabella di verità?
- → Forme canoniche
 - I. Somma di Prodotti (SOP)
 - II. DUALE: Prodotto di Somme (POS)

Prima forma canonica (SoP): Somma dei mintermini

$$F = \sum_{i=1}^{Q} m_i$$

$$F = A \cdot B + B \cdot \overline{C} =$$

$$= AB(C + \overline{C}) + (A + \overline{A})B\overline{C} =$$

$$= ABC + AB\overline{C} + AB\overline{C} + \overline{A}B\overline{C} =$$

$$= ABC + AB\overline{C} + \overline{A}B\overline{C}$$

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L4 - 29/35

Seconda forma canonica

- * DUALE della I forma canonica:
 - \triangleright considero i casi in cui: $\mathbf{F} = \mathbf{0}$

$$F = A \cdot B + B \cdot \overline{C}$$

A	В	С	F
0	0	0	<u>0</u>
0	0	1	<u>0</u>
0	1	0	1
0	1	1	<u>0</u>
1	0	0	<u>0</u>
1	0	1	<u>0</u>
1	1	0	1
1	1	1	1

$$\mathbf{F} = \mathbf{0}$$
 se e solo se:

Seconda forma canonica

- * Nuova definizione di F:
 - ➤ Elenco dei termini per cui: $F = 0 \rightarrow \sim F = 1$

$$\overline{F} = \sum_{i=1}^{W} M_i \quad , \quad W \le 2^N$$

Maxtermine, M_i :

Prodotto di tutte le variabili di ingresso al quale corrisponde un valore di funzione = 0

I forma can.:
$$F = \sum_{j=1}^{Q} m_j$$
, $Q \le 2^N \longrightarrow Q + W = 2^N$

$$Q + W = 2^N$$

A.A. 2008/09

© A. Borahese, F. Pedersini – DSI, UniMI

L4 - 31/35

Seconda forma canonica

* Esprimiamo F come: somma di MAXtermini:

$$F = A \cdot B + B \cdot \overline{C}$$

$$\overline{F} = \sum_{i=1}^{W} M_{i}$$

$$\overline{F} = ABC + ABC + ABC + ABC + ABC$$

Seconda Forma Canonica: POS

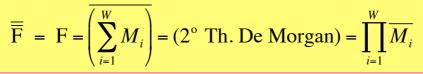
$$\overline{F} = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C$$

 <u>Negando</u> entrambi i membri ed applicando il <u>II teorema di De Morgan</u> si ottiene:

$$\overline{\overline{F}} = F = (A + B + C)(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})$$

In generale:

$$\overline{F} = \sum_{i=1}^{W} M_i, \quad W \le 2^N$$



$$M_i = a \cdot b \cdot c \longrightarrow \overline{M_i} = \overline{a} + \overline{b} + \overline{c}$$

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

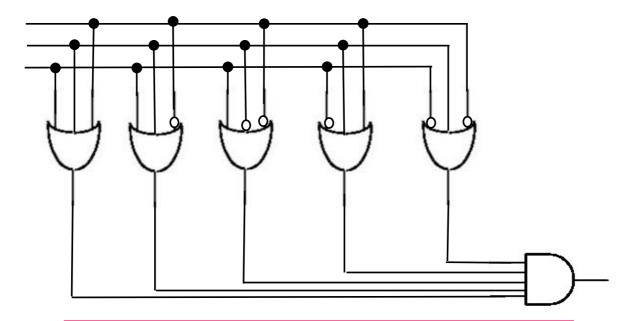
L4 - 33/35

Somma di Prodotti

❖ I termini-somma sono i casi in cui:
F = 0

$$\overline{M_i} = 0 \longrightarrow F = 0, \quad \forall i = 1..N$$

Circuito 2^a forma canonica: POS



$$F = (A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)$$

A.A. 2008/09

© A. Borghese, F. Pedersini – DSI, UniMI

L 4 - 35/35