

Architetture degli Elaboratori - I

Docenti:

Alberto Borghese, Federico Pedersini Dipartimento di Informatica Università degli Studi di Milano

Turno 2 (Cognomi G–Z) Prof. Federico PEDERSINI pedersini@di.unimi.it

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

Architetture Elaboratori I–II (6+6 CFU)

Orario lezione:

martedì 10.30-12.30 Aula G13
 giovedì 10.30-12.30 Aula G13

Laboratorio (a partire dalla prossima settimana):

Turno A: cognomi **A-F** giovedì 13.30-15.30 – **Aula 307** (Nicola BASILICO) Turno B: cognomi **G-Z** giovedì 13.30-15.30 – **Aula 309** (Matteo RE)

Inizio Laboratorio: 5 ottobre

Orario di ricevimento:

durante il corso: al <u>termine</u> di ogni lezione
 resto dell'anno: su appuntamento (e-mail)

MATERIALE DIDATTICO

- * Appunti + slide
 - > Slide delle lezioni: homes.di.unimi.it/~pedersin/AE-INF.html
 - ➤ Le slide da sole NON BASTANO!
- * Testi di riferimento:

In inglese:

D.A. Patterson, J.L. Hennessy,
 "Computer Organization & Design: The Hardware/Software Interface",
 Morgan Kaufmann, 2005.

In italiano:

- D.A. Patterson, J.L. Hennessy,
 "Struttura e Progetto dei Calcolatori", Zanichelli, 2006
- * testo di approfondimento su circuiti logici
 - > M.M. Mano, C.R. Kime, "Reti Logiche", Pearson, IV ed., 2008.
 - > F. Fummi, M.G. Sami, C. Silvano, "Progettazione digitale", McGraw-Hill.

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

9

Esame

MODALITÀ D'ESAME Architettura I / Architettura II

- ESAME (prova scritta + prova orale) → voto1
- PROGETTO di laboratorio (con l'esercitatore) → voto2

Arch. I: progettazione circuitale

Arch. II: programmazione Assembly

Voto finale = round(2/3 voto1 + 1/3 voto2)

Periodo di **validità** di ESAME e PROGETTO: **12 mesi** (max. distanza cronologica tra esame e progetto)

Obiettivi di questo insegnamento

A COSA SERVE un corso di Architettura degli Elaboratori ad uno studente di Informatica?

Che cos'è l'Informatica?

La scienza che studia il trattamento automatico (elaborazione) delle informazioni.

Obiettivo dell'insegnamento di Architetture:

comprensione del funzionamento della macchina che tratta le informazioni in modo automatico.

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

- 4

PROGRAMMA

Per arrivare a tale obiettivo, seguiremo questo...

PROGRAMMA:

- 1. Rappresentazione delle informazioni con un alfabeto binario
- 2. Elaborazione di informazioni binarie: algebra di Boole, funzione logica.
- 3. Elaborazione automatica di informazioni binarie
 - 3.1 rappresentazione elettrica di informazione binaria
 - 3.2 costruzione di operatori logici con "macchine elettriche (dispositivi elettronici)"
- 4. Progetto di circuiti a partire dalla funzione logica
- 5. Come memorizzare informazioni binarie
- 6. Progetto di circuiti con memoria
- 7. Progetto di un elaboratore completo

Obiettivo del corso

"Missione" dei corsi di Architettura 1 e 2: comprendere il funzionamento di un elaboratore elettronico

LEZIONE

Fondamenti di elettronica digitale

- > Algebra di Boole
- Logica combinatoria
- > Macchine sequenziali
- > La CPU

Il linguaggio del calcolatore

- > Programmazione Assembly
- > Linguaggio macchina

Come funziona un calcolatore moderno

- > CPU
- > memorie (cache)
- ➤ I/O (bus, interrupt e DMA, ...)
- > Architetture moderne (multiprocessore, multicore, GPU, ...)

LABORATORIO

I. Progettazione di circuiti digitali

LOGICLY/LOGISIM: ambienti di progettazione e simulazione di circuiti digitali

http://sourceforge.net/projects/circuit/

Architettura 1

II. Programmazione CPU in Assembly

SPIM (e altri): ambiente di simulazione elaboratore con CPU MIPS32

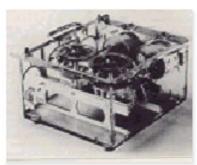
http://spimsimulator.sourceforge.net

Architettura 2

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

Storia dell'elaboratore (i primi passi)



Storia degli elaboratori

- Applicazione originaria di un elaboratore:
 calcolo automatico
- * Babilonesi, X secolo a.C.
 - > Abaco
 - > Evoluzioni fino a 1000 d.C.
- * B. Pascal, 1642
 - Pascalina (somma e sottrazione)
- ❖ G. von Leibnitz, 1673
 - Macchina calcolatrice (moltiplicazione e divisione)

Storia dell'elaboratore (1800)

- Applicazioni dell'elaboratore alternative al calcolo:
 CAM (Computer-Aided Manufacturing)
- Telaio Jaquard (1801):
 prima <u>macchina programmabile</u>
 della storia
 - > Programma di lavoro su schede
 - > Macchina dedicata

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

-

Storia dell'elaboratore (1800)

Classificazione Hardware / Software

Hardware:

Charles Babbage (1840) padre del calcolatore moderno. Inventa:

"Analytical Engine"

- Azionata a vapore (impossibile da costruire al tempo)
- Programmabile: programmi su schede

Ada Lovelace (1830):

 Formalizzazione del concetto di programma

Storia dell'elaboratore (1900 – 1940)

1890 - 1940: elaboratori elettromeccanici - sviluppo prestazioni

❖ 1890: H. Hollerith – Schede perforate a lettura <u>elettromeccanica</u> (relais).

 1932: T.J. Watson rileva il brevetto e fonda la "International Business Machines" (IBM).

1939: ABC – Atanasoff Berry Computer (University of Iowa)

> Elettromeccanico: ampio utilizzo di elettrovalvole e relé.

> Memoria cancellabile e riscrivibile

→ Miniaturizzazione:

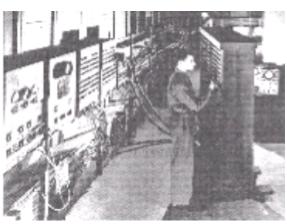
 Sviluppo di <u>calcolatrici da tavolo</u> meccaniche (diffusione nel commercio)

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

11

La prima generazione (ENIAC: 1946-1955)



1940 - 50: avvento dell'elettronica (a valvole)

> Aumento di prestazioni di 1000 volte

"Prima generazione" di elaboratori elettronici

- ENIAC (Electronic Numerical Integrator And Calculator) (University of Pennsylvania, 1946)
 - > 20 registri da 10 cifre
 - ➤ 18,000 valvole
 - > 70,000 resistenze
 - > 10,000 condensatori
 - > 6.000 interruttori
 - ➤ Dimensioni: 30 x 2.5 x 3 metri
 - > Peso: 30 tonnellate
 - > Consumo: 140 kW
 - > 100 operazioni/s
 - > Programmazione manuale

La prima generazione (1945-1951)

- Programma memorizzato su supporto intercambiabile
 - > (John Von Neumann, 1945)
- Eckbert, Mauchly
 - > EDVAC (V. Neumann),
 - > Mark I, 1948
 - > EDSAC (Cambridge, 1949)
- UNIVAC I
 (Universal Automatic
 Computer),
 - Eckbert, Mauchly, 1951.
 - Primo calcolatore commercializzato (1 M\$)

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

- 1

Applicazioni scientifiche vs. gestionali

Applicazioni scientifiche:

- UNIVAC: calcolo scientifico (1950).
 - > Calcoli lunghi e complessi

Applicazioni gestionali:

- ❖ IBM: mod. 701 (1953) e 702 (1955): applicazioni gestionali
 - > Calcoli semplici e ripetitivi
 - > Grandi quantità di dati
- ❖ IBM 704 Memoria con nuclei di ferrite
 - > 32,000 parole
 - ➤ Velocità di commutaz. di pochi µsec (I/O rate: 1÷10 kHz)
- ❖ IBM 709 (1958) Introduzione del "canale" di I/O.

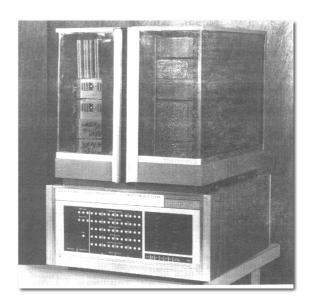
La seconda generazione (1952 – 1963)

1950–60: Introduzione **elettronica allo stato solido** e memorie a nuclei ferromagnetici.

- IBM 7000 Transistor anziché valvole
- ❖ IBM 7094 (1962) evoluzione del 709, a stato solido.
- CDC 6600 Primo supercalcolatore. 1962.
- CDC 3600 Multi-programmazione. 1963.
- Digital PDP-1 (1957)
- SOFTWARE: introduzione del FORTRAN (Formula Translator).
 - > Primo linguaggio ad alto livello

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano


1

La terza generazione (1964 –1971)

1960: Avvento dei circuiti integrati (LSI)

- ❖ IBM 360 (1964) Prima famiglia di calcolatori
 - > Costo: 360,000 \$
 - > Registri a 32 bit.
 - ➤ Clock 1÷4 Mhz.
- * Digital PDP-8 (1965)
 - > Primo minicalcolatore
 - > Costo: **20,000** \$
- ❖ Digital PDP-11 (1970)
 - diventa uno standard negli ambienti accademici

La quarta generazione (1971-1977)

1970:

- Miniaturizzazione su larga scala (VLSI)
- Introduzione del microprocessore Memorie a semiconduttore
- → Prestazioni: Super-computers
 - > Cray I (1976): primo supercalcolatore Vettoriale

- ➤ Intel 4004 (1971) 4 bit
- ➤ Intel 8080 (1974) 8 bit
- ➤ Motorola 6502
- Xerox Research Labs & Steve Jobs: primo Personal Computer: Apple II (1977)
 - → Processore Motorola (6502)
 - + Costo medio 2,000\$

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

17

Quarta/quinta generazione

1980: Computer alla portata di singolo utente

- * **IBM**: il primo **PC** (1981)
 - Sistema operativo MS-DOS (Microsoft di Bill Gates)
 - > Processore Intel 8086.
 - > Coprocessore Matematico Intel 8087.
- La quinta generazione (1977-....)

PC come Workstation

- > Potenziamento della grafica. Coprocessore grafico.
- > Multi-processori.
- > Introduzione di gerarchie di calcolo.
- > Processori RISC (Reduced Instruction Set Code).

Sesta generazione (futuro)

20...

- * Tecnologie
 - > Calcolatori ottici.
 - > Calcolatori chimici.
- Co-processori specializzati per:
 - > ricerca in data-base.
 - > trattamento grafica.
 - > trattamento video.
- Macchine "onnipresenti"
 - > smartphone, auto, casa, ...
- Macchine parallele
- * Macchine intelligenti e sensibili.
- Sistemi multimediali.

A.A. 2017/18

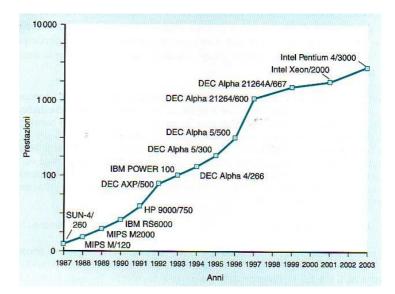
© F. Pedersini – Dip. Informatica, Università degli studi di Milano

1

Legge di MOORE

Legge di MOORE:

Ogni circa 18 mesi, le prestazioni raddoppiano


la velocità di calcolo, il numero di transistor nei chip, la capacità delle memorie.

Anno	Nome	Dimensoni (m³)	Potenza (Watt)	Prestazioni (somme/sec)	Memoria (kbyte)	Prezzo rivalutato	Prezzo/prestazioni (vs. UNIVAC)
1951	UNIVAC I	28	124 500	1 900	48	4 996 749	1
1964	IBM 360 modello 50	1.68	10 000	500 000	64	4 140 257	318
1965	PDP-8	0.23	500	330 000	4	66 071	13 135
1976	Cray-1	1.62	60 000	166 000 000	32	8 459 712	51 604
1981	IBM-PC	0.03	150	240 000	256	4 081	154 673
1991	HP900 modello 750	0.06	500	50 000 000	16 384	8 156	16 122 356
1996	Pentium Pro 200 Mhz	0.06	500	400 000 000	16 384	4 400	239 078 908
2003	Pentium 4 3.0 GHz	0.06	500	6 000 000 000	262 144	1 000	11 452 000 000

Legge di Moore: alcuni problemi

- * La velocità delle memorie non cresce con la velocità del processore.
 - ➤ Memorie gerarchiche cache.
 - > Aumento della parola di memoria.
 - > high-speed bus (gerarchie di bus)
- Tecniche di velocizzazione dell'elaborazione.
 - > Predizione dei salti.
 - Scheduling ottimale delle istruzioni
 (analisi segmenti di codice).
 - > Esecuzione speculativa.
- Tecniche di velocizzazione del trasferimento dati (I/O)
 - > Trasferimento diretto in memoria (DMA)
 - Velocizzazione e specializzazione dei bus

Evoluzione della potenza di calcolo (1987–2003) Patterson-Hennessy, 2006

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

21

Evoluzione INTEL: 1970 ÷ 1990

	4004	8008	8080	8086	8088
Introduced	15 nov 71	1 Apr 72	1 Apr 74	8 Jun 76	6 Jan 79
Clock speed	108 kHz	108 kHz	2 Mhz	5-10 Mhz	5,8 Mhz
Bus width	4 bit	8 bit	8 bit	16 bit	8 bit
No. transistors	2,300	3,500	6,000	29,000	29,000
Memory	640byte	16KByte	64 KByte	1MByte	1MByte
Virtual Memory	-	-	-	-	-

	80286	80386 DX	80386 SX	80486 DX
Introduced	1 feb 82	17 Oct 85	16 Jun 88	10 Apr 89
Clock speed	6-12.5MHz	16-33MHz	16-33Mhz	25-50Mhz
Bus width	16 bit	32 bit	16 bit	32 bit
No. transistors	134,000	275,000	275,000	1,200,000
Addressable Memory	16Mbyte	4GByte	4GByte	4GByte
Virtual Memory	1 GByte	64 TByte	64 TByte	64 TByte
Observations	15 milioni in 6 anni	Multi-tasking	64 TByte	Co-processore nella CPU

	80486 SX	Pentium	Pentium Pro	Pentium II
Introduced	22 Apr 91	22 Mar 93	1 Nov 95	7 May 97
Clock speed	6-133MHz	60-166MHz	150-200Mhz	200-300Mhz
Bus width	32 bit	32 bit	32/64 bit	32/64 bit
No. transistors	1,185,000	3,100,000	5,500,000	7,500,000
Addressable Memory	4 Gbyte	4 GByte	64 GByte	64 GByte
Virtual Memory	64 TByte	64 TByte	64 TByte	64 TByte
Observations		Pipeline spinto	Cache 2 livelli	MMX, memorie alta velocità

Evoluzione Intel – 1990 ÷ ...

	Pentium III	Pentium 4	Pentium III Xeon	
Introduced	26 Feb 99	Nov 2000	2001	
Clock speed	450-660MHz	3 GHz	2-3.2Ghz	
Bus width	32/64 bit	32/64 bit	32/64 bit	
No. transistors	9,500,000	42,000,000	Na	
Addressable Memory	64 Gbyte	64 GByte	64 GByte	
Virtual Memory	64 TByte	64 TByte	64 TByte	
Observations	SIMD	2 livelli di cache	Architettura di bus: NetBurst	

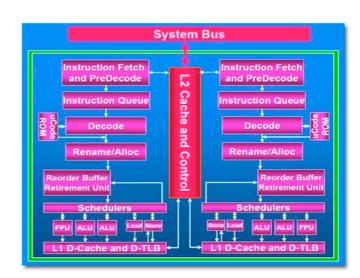
	ITANIUM	ITANIUM 2	Pentium M	Core DUO
Introduced	2002	2002	2003	
Clock speed	800 MHz	1.3-1.5 GHz	1.3-1.7 Ghz	2.5 GHz
Bus width	64 bit	64 bit	64 bit	64 bit
No. transistors	na	na	42,000,000	151,000,000
Addressable Memory	16 Gbyte	16 Gbyte	64 GByte	64 GByte
Virtual Memory	64 TByte	64 TByte	64 TByte	64 TByte
Observations	EPIC – 64 bit	6.4 GByte/s su Bus di sistema	Centrino Architecture Very-low power	2 cores x86-64, Cache in comune

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

2

Esempio: INTEL Core Duo



Cambio di rotta: efficienza energetica

Intel Core Duo (2006)

(product code: 80539 - "Yonah")

- > 2 cores identici (Pentium III) sullo stesso "die"
- 2 Mbytes di cache L2 condivisi
- arbitraggio per l' accesso alla cache L2 e al FSB.
- Hardware di controllo CPU per la riduzione del consumo energetico

Sviluppi futuri delle architetture

Dopo il 2003, evoluzione in altre direzioni:

Efficienza (istruzioni/s / Watt)

> INTEL Pentium M / Centrino

Ottimizzazione rapporto uomo/macchina

> INTEL Core DUO

Parallelizzazione di architetture semplici: architetture MANY-CORE

- > STI CELL processor (Playstation III)
- > GPU (Nvidia CUDA architecture)

A.A. 2017/18

© F. Pedersini – Dip. Informatica, Università degli studi di Milano

25