
Detecting self-mutating malware using
control-flow graph matching

Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga

Dip. Informatica e Comunicazione
Università degli Studi di Milano

Via Comelico 35, I-20135 Milan, Italy
{bruschi,martign,monga}@dico.unimi.it

Abstract. Next generation malware will by be characterized by the
intense use of polymorphic and metamorphic techniques aimed at cir-
cumventing the current malware detectors, based on pattern matching.
In order to deal with this new kind of threat novel techniques have to be
devised for the realization of malware detectors. Recent papers started
to address such issue and this paper represents a further contribution in
such a field. More precisely in this paper we propose a strategy for the
detection of malicious codes that adopt the most evolved self-mutation
techniques; we also provide experimental data supporting the validity of
such a strategy.

1 Introduction

Malware detection is normally performed by pattern matching. Detectors have a
database of distinctive patterns (the signatures) of malicious pieces of code and
they look for that in possibly infected systems. This approach is fast and, up to
now, quite effective when it is used to find known viruses.

Such defences will probably be circumvented by the next generation malicious
code which will intensively make use of metamorphism. This type of malware
is not yet appeared in the wild, but some prototypes have been implemented
(see for example MetaPHOR [2], Zmist [12], Evol) which have shown the
feasability and the efficacy of mutation techniques [18]. Some papers recently
appeared in literature [8, 7], have shown that current commercial virus scanners
can be easily circumvented by the use of simple mutation techniques.

Various levels of code mutation have been individuated in literature, rang-
ing from simple modifications (e.g. useless instructions insertion, and registers
swapping) to the complete mutation of the payload. Probably the most advanced
prototype in such a context is represented by the Zmist virus, which beside a
metamorphic engine which takes care of changing the static structure of the pay-
load, inserts itself into an executable code and scatters its body among the benign
instructions (that are updated to reflect relocations). Malicious fragments are
then connected together using appropriate control flow transition instructions.
The malicious code will be executed when the normal control flow reaches its
first instruction: this is known as Entry Point Obfuscation [4]. Threats such as

those represented by the Zmist virus, poses three serious challenges to malware
detectors:

– the ability to recognize self-mutating code code;
– the ability to recognize malware which is randomly spread in the original

code;
– the ability to recognize code which does not modify neither the behavior nor

the properties of the infected program.

Note also that in order to be effective a malware detector has to be able to solve
the above challenges simultaneously.

The only viable way for dealing with such a kind of threat is the construction
of detectors which are able to recognize malware’s dynamic behavior instead of
some static properties (e.g. fixed byte sequences or strangeness in the executable
header). Recent papers ([9, 7, 14, 17]) started to address such issues and this
paper represents a further contribution in such a field. More precisely in this
paper we propose a strategy for solving the problems above mentioned, and
we will also provide experimental data which indicate that such a strategy can
represent a significant step towards the identification of novel techniques for
dealing with the new forms of malware.

Roughly speaking the strategy we propose works as follows. Given an exe-
cutable program P we perform on it a disassembling phase which produces a
program P ′, on P ′ we perform a normalization phase aimed at reducing the
effects of most of the well known mutations techniques and at unveiling the
flow connection between the benign and the malicious code, thus obtaining a
new version of P namely PN . Subsequently given PN we build its correspond-
ing labelled inter-procedural control flow graph CFGPN

which will be compared
against the control flow graph of a normalized malware CFGM in order to ver-
ify whether CFGPN

contains a subgraph which is isomorphic to CFGM , thus
reducing the problem of detecting a malware inside an executable, to the sub-
graph isomorphism problem1. Using such a strategy we will be able to defeat
most of the mutations techniques (see also [5] for further details) adopted for
the construction of polymorphic malware as well as code scattering. Obviously,
the strategy still need improvements, but the experimental results we obtained
are really encouraging.

The paper is organized as follows. Section 2 describes some of the techniques
that can be adopted by a malware to accommodate its payload within a benign
program stealthily. In Section 3 we describe the approach we followed in order to
treat the kind of malicious code. Section 4 briefly describes how our prototype
was realized and discusses the experimental results obtained. Section 5 discussed
related works and in the last section we draw our conclusion about the work
presented.

1 The subgraph isomorphism problem is a well known NP-complete problem, but in
most of the instances we will consider it turns out to be tractable in an efficient way.

2 Concealing malicious code

In order to assess our approach, we experimented with a simulated malware that
is able to insert its own payload (the guest) into another executable (the host).
Our mock virus can inject its code in ELF executables, and it uses only basic
modifications of the host code to accommodate the guest. The basic technique
consists in localizing existing candidate insertion points. Moreover, new insertion
points are added while guaranteeing that the host code continue to run mostly as
in the past. The entry point of the guest is located somewhere in the executable
code but its never referenced directly (in fact it is possible that it is never
reached, and consequently, never executed), thus achieving complete entry point
obfuscation. There are many different ways to perform code insertion and entry
point obfuscation but we decided to analyze deeply only three of them, in order
to keep our prototype simple enough, while being able to demonstrate that
complete insertion, whose identification and reversal is not obvious, is possible.

A brief description of the techniques used by our prototype (which targets
GNU/Linux IA-32 Elf executables) to achieve stealthiness follows.

2.1 Unused space between subsequent functions

The first technique we consider exploits a behaviour of most compilers which
usually between a function epilogue and the next one prologue add some padding
filled with NOPs. It is easy to find this unused space by trivial pattern matching:
we used two different patterns: (i) \x90{7,} (i.e., more than 7 consecutive nop)
and (ii) \xc3\x90{7,} (i.e. ret followed by more than 7 consecutive nops). The
former is used to identify any type holes that do may accommodate a malicious
code; the latter is used to identify holes that start just after the epilogue and
that can potentially be reached by an execution flow2. Any hole of type (ii) can
be used as the guest entry point by moving the ret instruction at the end of the
nops padding and substituting nops with payload operations. (Figure 1 shows
this kind of insertion). Holes of type (i) can also be used to insert arbitrary code,
but this code must be reached by a control flow starting from an entry point
created somewhere else, otherwise it will never be executed. This technique is
known as cavity insertion [4].

During our experiments we discovered that insertion points of type (i) are
pretty common (several occurrences per binary program), while insertion points
of type (ii) are rather rare, although we found at least a candidate in virtually
all the binaries we examined.

2.2 Manipulation of jump tables

Another technique we implemented for realizing entry point obfuscation is the
jump-table manipulation. A jump-table is commonly used by compilers to im-
2 This pattern does not correspond to a standard epilogue (i.e., leave; ret) because

in several cases the leave instruction is substituted with some direct operations on
the stack.

mov %ebp,%esp

pop %ebp

ret

nop

nop

...

nop

nop

push %ebp

mov %esp,%ebp

mov %ebp,%esp

pop %ebp

payload

payload

...

payload

payload

ret

push %ebp

mov %esp,%ebp

Fig. 1. Insertion of the guest payload between two function boundaries

plement switch-like constructs. The right block of instructions is addressed by
an indirect jump through the table, which is stored in an appropriate section of
ELF executables, namely the .rodata section.

Jump tables can be exploited to inject malicious code in two conceptually
analogous ways: (i) by replacing an entry with an address in which the new
payload has been inserted and then link back the payload to the original target
address or (ii) by moving a block of instructions addressed by an entry to a new
location, while using the room just freed for the payload, augmented with a final
jump to the original code.

We look for jump tables in executables by pattern matching in the text seg-
ment: we looked for \x24\xff\d(addr) (e.g. jmp *addr(,%reg,4)) where addr,
or even simply \d{4}, must be an address belonging to the .rodata section. Once
the absolute address of the jump table has been found, target addresses can be
located just by extracting values starting from the beginning of the jump table
and stopping when a value does not represent a valid text segment address.

2.3 Data segment expansion

The last technique we considered is based on creation of an hole in the data
segment, hole which can then be used for any kind of purposes as the benign
code is not aware of its presence and instructions in this segment can be normally
executed on my architectures. In the following a brief description of such a
technique is provided.

Figure 2 depicts the simplified layout of an ELF executable; the left picture
shows the layout of the file while the one on the right shows the layout once the
executable is loaded in memory; the text segment is depicted in white while the
data segment in gray. The data segment of an executable is divided in several
sections, the most important ones are .data and .bss. The former is used to
hold initialized data and it is loaded from the executable file while the latter
holds uninitialized data and has no file counterpart.

Since the .bss section is neither initialized nor stored on the file, it can be
easily shifted in order to increase the space available for the .data section which
always precedes .bss. Such a modification however would require that all the

.text

.rodata

.data

.text

.rodata

.data

.bss

Fig. 2. Simplified layout of an executable.

instructions that reference the .bss section being updated. In order to avoid such
an operation, an empty space of the same size of the original .bss is preserved
in the expanded .data, and a new .bss section is mapped into a higher set of
addresses. In such a way the code continues to refer to the old .bss section (see
Figure 3). The new .bss and the hole created in .data can instead be used by
the guest code for any kind of purpose.

.rodata

.bss (old)

.data

.data

.text .text

.rodata

.bss

.bss (old)

.data

.data

Fig. 3. Simplified layout of a manipulated executable with an expanded .data

3 Unveiling malicious code

The techniques described in the previous Section make malware detection rather
problematic with respect to current anti-virus technology ([8, 7] witnessed the
problem experimentally). In fact:

– pattern matching fails, since fragmentation and mutation make hard to find
signature patterns;

– emulation would require a complete tracing of analyzed programs because
the entry point of the guest is not known. Moreover every execution should
be traced until the malicious payload is not executed;

– even heuristics based on predictable and observable alterations of executa-
bles could become useless when insertion is performed producing almost no
alteration of any of the static properties of the original binary.

The core of the problem is that the malicious code seamlessly becomes part
of the host program, thus making very difficult to distinguish between the two.
In order to find out malware code we have to deal with both mutations and
scattering.

As far as mutation is concerned, we aim at normalizing different instances
of the same malicious code into a canonical and minimal version. Our previ-
ous experiments [5] showed that, by exploiting well known techniques of code
optimization, it is possible to revert most of the mutations commonly used by
malware. However, the lack of an easily guessable entry point makes things much
more complicated. In fact, the detection can not be restricted to a limited set of
instructions to check whether they can be considered equivalent (up to an accept-
able threshold of accuracy) to malware code. The detection must consider every
instruction in order to analyze if some groups of them, logically connected but
physically separated by malicious scattering, match with the canonical version
of malware under analysis.

In order to perform such tasks we devised a detection process which is com-
posed by two different components: the code normalizer and the code comparator.
The following sections describe them in details.

3.1 Code normalizer

The goal of the code normalizer is to normalize a program, i.e. transform it
into a canonical form which is simpler in term of structure or syntax while pre-
serving the original semantic. Most of the transformations used by malware to
dissimulate their presence led to unoptimized versions of its archetype3, since
they contain some irrelevant computations whose presence has the only goal of
hurdling recognition. Normalization aims at removing all the trash code intro-
duced during the mutation process and thus can be viewed as an optimization
of their code.

Decoding The executable machine code P is translated into a new represen-
tation P ′ that allows to describe every machine instruction in term of the oper-
ations it performs on the cpu. The goal is to increase, as much as possible, the
level of abstraction and to express the program in a form that is more suitable
for deeper analyses. P ′ will be the standard input to all the subsequent phases.

3 The term archetype is used to describe the zero-form of a malware, i.e., the original
and un-mutated version of the program from which other instances are derived.

Control-flow and Data-flow analysis Control-flow analysis detects control
flow dependencies among different instructions, such as dominance relations,
loops, and recursive procedure calls. Data-flow analysis collects information
about data relationship among program instructions. Particularly, all the defini-
tions which can possibly reach each program instruction and all the definitions
that are live before and after each instruction.

Code transformation Information collected through control-flow and data-
flow analysis are used to identify which kind of transformations can be applied at
any program point, in order to reduce it to the normal form. The transformation
that can be successfully used to achieve our goal are compiler optimizations that
are particularly suited for the reduction of the size of the code [3, 16], which,
although developed to be used on source code, they have been showed to be
suited also for machine executable code [11].

More practically, normalization allows to:

– identifying all the instructions that do not contribute to the computation
(dead and unreachable code elimination);

– rewriting and simplifying algebraic expressions in order to statically evaluate
most of their sub-expressions that can be often removed;

– propagating values assigned or computed by intermediate instructions, and
assigned to intermediate variables into the instructions that make use of these
values in order to get rid of the intermediate variables previously needed only
for their temporary storage (constant and expression propagation);

– analyze and try to evaluate control flow transition conditions to identify
tautologies, and rearrange the control flow removing dead paths;

– analyze indirect control flow transitions to discover the smallest set of valid
targets and the paths originating. It is worth nothing that the connections
between the benign and the malicious code are concealed behind these layers
of indirections.

Although the analysis involves every program instructions, we expect that
most of the candidate transformation targets are those that belong to the mali-
cious code since host programs are usually already optimized during compilation.

Limitations of static analysis As just mentioned, more accurate the code nor-
malizer is, major are the chances of recognizing a given malware. Unfortunately
there exist transformations that can be very difficult to revert and situations in
which normalization can not be performed on the entire code.

The use of opaque predicates [10] during the mutation can complicate the de-
tection because the code produced, once normalized, may have different shapes.
A predicate is defined opaque if its value is known a priori during obfuscation
but it is difficult to deduce statically after obfuscation has been applied. Opaque
predicates, which are generally used in code obfuscation and watermarking, allow
to distort the control flow graphs inserting new paths that will not be removed

during normalization unless the predicate can be evaluated, and the evaluation
usually is very expensive or unfeasible.

The adoption of anti-analysis techniques by the malware, is a further prob-
lem for malware detection. Within this category fall anti-disassembling tech-
niques [15] which can be employed to prevent a precise decoding of programs.
We voluntarily neglected this problem because we assumed that self-mutating
malicious codes need to be able to analyze their own code in order to generate
the new one, thus they must be able to decode themselves and if they can, at
least a decoder must exist.

The presence of indirection (where by indirection we mean a control flow
transition that reference the target through a variable), in the analyzed code,
could lead to an incomplete exploration of the code itself. In such a case if the
malicious code, or at least its entry point, resides in the unexplored region, the
corresponding control flow graph will not be complete and the presence of the
malicious code will never be detected. The data-flow analysis performed during
normalization plays a fundamental role in the resolution of indirections but it
may miss to solve some of them; some heuristics could be adopted in order to
exhaustively identify code regions and explore them.

Notwithstanding these limitations our experiments (see [5]) showed that nor-
malization can be used effectively in most of the cases.

3.2 Code comparator

Given a program P and a malicious code M as input the code comparator
answers to the following question: is the program P hosting the malware M? or
more precisely, is an instance of M present inside P? The code comparator does
not work directly on the native representation of the two inputs but instead it
works on the normalized form P , namely PN . Obviously we cannot expect to
find, a perfect matching of M in PN , as M is self-mutating, and even if most
of the mutations it suffered have been removed through the code normalizer, we
expect that some of them remain undiscovered. Therefore, the code comparator
must be able to cope with most of these differences, which we observed are
normally local to each basic block4. As a consequence, the basic control flow
structure (as results from normalization) is in general preserved by mutations.

Thus, we decided to represent the malicious code and the alleged host pro-
gram by their inter-procedural control flow graphs. A control flow graph (CFG)
is an abstract representation of a procedure: each node in the graph represents a
basic block, i.e. a straight-line piece of code without any jumps or jump targets;
jump targets start a block and jumps end a block. Directed edges are used to
represent jumps in the control flow. An inter-procedural CFG links together the
CFGs of every function of a program.

Under this assumption, the search for malicious code can be formulated as
a subgraph isomorphism decision problem: given two graphs G1 and G2, is G1

4 A basic block is a sequence of instructions in which every of them always executes
before all the subsequent ones.

isomorphic to a subgraph of G2? Fig. 4 shows the two graphs just mentioned:
the first one models the searched malicious code and the second one the program
which is going to be analysed in order to verify if it is hosting the malicious code.
We briefly recall that sub-graph isomorphism is an NP-complete problem in the
general case, but in our particular case, characterized by highly sparse graphs,
it turned out to be computable in a very efficient way.

Fig. 4. The graphs representing a malicious code M and a generic normalized program
PN . The nodes highlighted in gray are those of PN program matching the ones of M .

As comparison through raw inter-procedural control flow graphs is too coarse
we decided to augment these graphs labelling both nodes and edges: nodes are
labelled according to the properties of the instructions belonging to them and
edges are labelled according to the type of the flow relations between the nodes
they connect. The labelling method we decided to adopt is very similar to the
one proposed in [14]. Instructions, similar from the semantic point of view, are
grouped together into classes and the label assigned to each node is a number that
represents the set of classes in which, instructions of the node, can be grouped.
Edges are labelled in the same way: possible flow transitions are grouped into
classes according to the type of each transition. Table 1 shows the classes in
which we decided to group instructions and flow transitions. Calls to shared
library functions are also represented with the same notation: the caller node is
connected to the function that is represented with just one node and which is
labelled with a hash calculated starting from the function name.

It is important to note that the normalization allows reduce the number of
possible classes because assembly instructions are converted into the interme-
diate representation which explicitly describes each instruction in term of the
actions it performs on the CPU. Instructions like push and pop do not require a
dedicated class because they are translated in assignment and integer arithmetic
instructions.

Instruction classes

Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
Indirect function call
Branch
Jump
Indirect jump
Function return

Flow transition classes

One-way
Two-way
Two-way (fallback or false)
N-way (computed targets of
indirect jumps or calls)

Table 1. Instructions and flow transition classes.

The comparison method gracefully handles malicious code fragments scat-
tered anywhere, no matter where they are located, on condition that it is possi-
ble to find out the connections existing among them. That is possible because,
for the way in which the problem has been formulated, no information about the
physical location of the fragments and about the properties of these locations are
considered. For example, a malicious code that, during execution, jumps from
the text to the data segment, and vice versa, or that jumps across different
functions is treated as exactly one that would jump to an adjacent memory ad-
dress. It is a code normalizer duty to unveil the connections existing among the
fragments composing the malware.

4 Prototype implementation and experimental results

A prototype has been built in order to verify experimentally our idea both in
terms of correctness but also in terms of efficiency. We build our code normal-
ization on top of Boomerang [1], which is an open source decompiler which
reconstructs high-level code starting from binary executables. Boomerang al-
lowed us to perform the data-flow and control-flow analysis directly on machine
code. We adapted it in order to better handle the set of transformations, previ-
ously described, needed for removing the mutations and bring a malware back to
its original form. The set of transformations to apply to a code are decided on the
basis of the results of control and data flow analysis. The analysis framework we
considered is also capable of accommodating the resolution of indirections and
to perform jump-table and call-table analysis.

Once the transformations above described are performed on an executable,
a labelled control flow of the resulting code is built and it is fed, along with the
control flow of a malware, to a sub-graph isomorphism algorithm in order to
perform the detection phase. For such a task we referred to the VF2 algorithm
contained in the VFlib [13] library.

4.1 Code normalization evaluation

The effectiveness of code normalization was evaluated in [5] by using the MetaPHOR [2]
virus. A big set of virus samples, about 115, was normalized in order to compare
the original form with the new one. We observed that the effectiveness of the
approach has been confirmed by the fact that all the samples assumed the same
shape and that their labelled control flow graphs can be considered isomorphic.

As all possible kind of transformations have been successfully applied during
the samples normalization, we believe that the same encouraging results can be
obtained when the same approach is used in order to discover the link between
the host code and the malicious code entry point because it camouflaged in the
same way in which links among malicious code fragments are.

A measure of the time efficiency of this step of the detection process has been
performed. It turned out that the time required to normalize small fragments
of code composed by few functions, and noticed that the time ranges from 0.2
secs. to 4.4 secs. This data indicates that such a phase will probably be very
time consuming with big executables.

4.2 Code comparison evaluation

In order to evaluate the correctness of our approach we performed a set of exper-
imental tests on a huge set of system binary executables. The executables have
been picked up from a GNU/Linux distribution. Subsequently they have been
processed in order to construct their inter-procedural augmented control flow
graphs, from whom the graphs associated to each program function have been
generated; duplicated functions have been thrown away5. During our preliminary
experiments we noticed that small graphs (4 or less) are not suited to describe
unambiguously some particular code fragments. For this reason we decided to
throw away from our sample set all graphs with 5 or less nodes. Functions, or
standalone code fragments, with such a small number of nodes cannot repre-
sent a computation that, from the detection point of view, can be considered
“typical”. Table 2 summarized the characteristics of our sample.

Type #

Executables 572
Functions (with more then 5 nodes) 25145
Unique functions (with more then 5 nodes) 15429
Table 2. Sample set used during our experiments.

The unique functions (functions found in more then one executable were used
only once) identified were used to simulate malicious codes and we look for their

5 Two functions are considered equivalent if the MD5s, computed on the strings built
using the first byte of any machine instruction composing their code, match.

occurrences within the programs of the sample set using our code comparator
module. The code comparator reported 55606 matches. In order to evaluate
the correctness of such a data we compared it against the results returned by
comparing the fingerprints of the considered codes. Note that the fingerprinting
method produces almost no false positive, while it can have false negative. It
turned out that 96.5% (53635) of the matches found, were confirmed also by the
fingerprint method. The two methods instead disagree on the remaining 3.5%
(1971) of the samples, for our comparator these were instances of the simulated
malicious code while this was not true for the fingerprinting method. As in such
a case even the fingerprinting method can be wrong we deepen our analysis, in
order to have a better estimate of the false positive ratio of our code comparator.
For this reason we randomly chosen, among the subset of the sample on which
the two method disagreed, a set E of 50 potentially equivalent pairs of code
fragments and inspected them manually. The same was done with a set NE of
50 potentially different pairs of code fragments. The results of our evaluation
are reported in Table 3. With the exception made for a few cases, involving
rather small graphs, it turned out that our code comparator was correct in
determining the equivalence of members of E. Some code fragments required a
thorough analysis because of some differences local to the nodes of the graphs
(probably the same code compiled in different moment) that, after all, turned
out to be equivalent. Other few cases highlighted a bug in the routine that
performs labelling6 and another case involved two enormous graphs there were
not possible to compare by hand. With respect to the member in NE all the
results of the code comparator were confirmed by the manual inspection.

Positive results # %

Equivalent code 35 70
Equivalent code
(negligible differences) 9 18
Different code
(small number of nodes) 3 6
Unknown 1 2
Bug 2 4

Negative results # %

Different code 50 100

Table 3. Manual evaluation of a random subset of the results returned by the code
comparator.

Even if sub-graph isomorphism is an NP-complete problem in the case of
general graphs, the particular instances of graphs we are dealing with make it well
tractable. A generic inter-procedural control flow graph has a huge number of
6 The prototype was not able to find out the name of two shared library functions,

assumed they were unknown and considered them equivalent. The two codes that,
apart from the different functions called were equivalent, were erroneously considered
equivalent.

nodes but it is highly sparse, in fact the average density we measured (measured
as |E|/|N |2, where E is the set of edges and N the set of nodes) was about
0.0088.

In order to verify this assumption we measured the time requested to perform
the matching. We decided to distinguish between: (i) average time required to
load a graph measured with respect to the number of nodes in the graph and
(ii) worst cases time required to perform a complete search within the graph
representing host programs under verification (no distinction has been made
between positive and negative matches). These measures, collected through a
GNU/Linux system with a IA-32 1GHz processor, are reported in Fig. 4. In
particular, the data provided shows that the critical phase of the entire procedure
is not related to the computation time but instead to the initialization of the
requested data structures. A quick glance at the code of the library used to
perform the matching highlighted that when a graph is loaded, internal data
structures are filled in O(n2) (n stands for the number of nodes) but we believe
that the same goal can be achieved in O(n).

nodes Average load time Worst detection time
(secs.) (secs.)

0 - 100 0.00 0.00
100 - 1000 0.09 0.00
1000 - 5000 1.40 0.05
5000 - 10000 5.15 0.14
10000 - 15000 11.50 0.32
15000 - 20000 28.38 0.72
20000 - 25000 40.07 0.95
25000 - 50000 215.10 5.85

Table 4. Summary of the measured average load time and of the worst detection time
with regards to the number of nodes.

5 Related works

The problem of the detection of mutating malware is not new and the first theo-
retical studies about the problem [6] have posed serious worryings demonstrating
that there could exist malware which no algorithm can detect. Some paper ap-
peared recently in the literature started to pragmatically address the problem
of the detection of evolved malicious code with mutating capabilities. Different
approaches have been proposed in order to target specific types of malware and
specific propagation methods.

The first work which addressed the problem of the detection of obfuscating
malware through static analysis was done by Christodorescu and Jha [7] which
has been refined in [9]. In their first work annotation of program instructions has
been used in order to provide an abstraction from the machine code and to detect

common patterns of obfuscation; malicious codes were then searched directly on
the annotated code. In their second work deobfuscation through annotation has
been replaced by a more sophisticated set of complementary techniques that
are used in concomitance to corroborate the results. The techniques adopted
provide different levels of resilience to mutation and ranges from the detection
of previously known mutated patterns to the proof of instructions sequences
equivalence through the use of theorem prover and random execution. Our work
shares the same goals but adopts a different strategy which consists in the most
complete defection of mutations through normalization.

Polygraph [17] targets polymorphic worms and is capable of automatically
determining appropriate signatures. Signatures are generated starting from net-
work streams and consist of multiple disjoint content substrings which are sup-
posed to be shared among different instances; these invariant substrings consists
of protocol framing, return addresses, and poorly obfuscated code.

In [14] an algorithm for the detection of unknown polymorphic worms is pre-
sented. The algorithm compares the similarity of apparently independent net-
work streams in order to discover if they are carrying the same malicious code.
Each network stream is processed in order to identify potential executable code
by trying to disassemble each stream and to generate the appropriate control
flow graph which is then divided in little sub-graphs in order to fingerprints the
stream. Our comparison method share some similarities with the one proposed
in the paper: we also represent executables code trough labelled control flow
graphs (we work with them in their entirety) but we adopted different compari-
son strategies and performed normalization because we treated a different type
of malicious codes that adopt more sophisticated anti-detection techniques. We
believe that the normalization techniques we have proposed can be used to im-
prove the detection power making the system no more susceptible to malware
that could adopt more sophisticated mutations.

6 Conclusions and future works

Despite theoretical studies demonstrated that there could exist an undetectable
malicious code we have given our contribution in demonstrating that the tech-
niques currently adopted by malicious code writer in order to achieve perfect
mutation do not allow to get so close to the theoretical limit.

We analyzed the type of transformations adopted to implement self-mutating
malware in order to avoid detection and we convinced ourselves that the only
viable way for dealing with such a kind of threat is the construction of detectors
which are able to characterize the dynamic behavior of the malware.

We have proposed a pragmatical approach that is able to cope quite well
with this treat which is based on (i) the defection of the mutation process and
(ii) the analysis of a program in order to verify the presence of the searched
malicious code. Mutation process is reverted through code normalization and the
problem of detecting malware inside an executable is reduced to the subgraph

isomorphism problem: a well known NP-complete problem that nevertheless can
be efficiently computed when sparse graphs are concerned.

We believe that experimental results are encouraging and we are working on
refining our prototype in order to validate it in more real scenarios.

References

1. Boomerang. http://boomerang.sourceforge.net.
2. MetaPHOR. http://securityresponse.symantec.com/avcenter/venc/data/

w32.simile.html.
3. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley, 1986.
4. C. Associates. Security advisor center glossary. http://www3.ca.com/

securityadvisor/glossary.aspx.
5. D. Bruschi, L. Martignoni, and M. Monga. Using code normalization for fighting

self-mutating malware. In To be presented at ISSSE06.
6. D. M. Chess and S. R. White. An undetectable computer virus. In Proceedings of

Virus Bulletin Conference, Sept. 2000.
7. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious

patterns. In Proceedings of USENIX Security Symposium, Aug. 2003.
8. M. Christodorescu and S. Jha. Testing malware detectors. In Proceedings of the

2004 ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2004), pages 34–44, Boston, MA, USA, July 2004. ACM Press.

9. M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-
aware malware detection. In Proceedings of the 2005 IEEE Symposium on Security
and Privacy (Oakland 2005), Oakland, CA, USA, May 2005.

10. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transfor-
mations. Technical Report 148, Department of Computer Science, University of
Auckland, July 1997.

11. S. K. Debray, W. Evans, R. Muth, and B. D. Sutter. Compiler techniques for code
compaction. ACM Trans. Program. Lang. Syst., 22(2):378–415, 2000.

12. P. Ferrie and P. Ször. Zmist opportunities. Virus Bullettin, 2001.
13. P. Foggia. The VFLib graph matching library, version 2.0. http://amalfi.dis.

unina.it/graph/db/vflib-2.0/.
14. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic worm

detection using structural information of executables. In International Symposium
on Recent Advances in Intrusion Detection, 2005.

15. C. Linn and S. Debray. Obfuscation of executable code to improve resistance
to static disassembly. In CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, pages 290–299, New York, NY, USA, 2003.
ACM Press.

16. S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

17. J. Newsome, B. Karp, and D. X. Song. Polygraph: Automatically generating sig-
natures for polymorphic worms. In IEEE Symposium on Security and Privacy,
pages 226–241, 2005.

18. P. Ször and P. Ferrie. Hunting for metamorphic. In Proceedings of Virus Bulletin
Conference, Sept. 2001.

