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Regret Minimization for Reserve Prices
in Second-Price Auctions

Nicolò Cesa-Bianchi, Claudio Gentile, and Yishay Mansour

Abstract— We show a regret minimization algorithm for setting
the reserve price in a sequence of second-price auctions, under
the assumption that all bids are independently drawn from the
same unknown and arbitrary distribution. Our algorithm is
computationally efficient, and achieves a regret of ˜O(

√
T) in

a sequence of T auctions. This holds even when the number of
bidders is stochastic with a known distribution.

Index Terms— Prediction theory, sequential analysis, statistical
learning, semi-supervised learning.

I. INTRODUCTION

CONSIDER a merchant selling items through e-Bay
auctions. The sell price in each auction is the second-

highest bid, and the merchant knows the price at which the
item was sold, but not the individual bids from the bidders
that participated in the auction. How can the merchant set a
reserve price in order to optimize revenues? Similarly, consider
a publisher selling advertisement space through Ad Exchange
(such as AdX) or Supply Side Platform (such as Adsense),
where advertisers bid for the advertisement slot and the price
is the second-highest bid. With no access to the number of
bidders that participate in the auction, and knowing only the
actual price that was charged, how can the publisher set an
optimal reserve price?

We abstract this scenario by considering the following
problem: A seller is faced with repeated auctions, where each
auction has a (different) set of bidders, and each bidder draws
bids from some fixed unknown distribution which is the same
for all bidders. It is important to remark that we need not
assume that the bidders indeed bid their private value. Our
assumption on the bidders’ behavior, a priori, implies that
if they bid using the same strategy, their bid distribution
is identical.1 The sell price is the second-highest bid, and the
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1For example, if we had considered a first-price auction, then assuming that

bidders use the same strategy to map their private value to a bid would result
in the same bid distribution.

seller’s goal is to maximize the revenue by only relying on
information regarding revenues on past auctions.

The issue of revenue maximization in second-price auctions
has received a significant attention in the economics litera-
ture. The Revenue Equivalence theorem shows that truthful
mechanisms2 that allocate identically have identical revenue
(see [15]). Myerson [14], for the case of monotone hazard rate
distributions, characterized the optimal revenue maximization
truthful mechanism as a second-price auction with a seller’s
reserve price, i.e., with a minimum price disqualifying any bid
below it.

In addition to their theoretical relevance, reserve prices
are to a large extent the main mechanism through which a
seller can directly influence the auction revenue in today’s
electronic markets. The examples of e-Bay, AdX and Adsense
are just a few in a large collection of such settings. The
practical significance of optimizing reserve prices in sponsored
search was reported in [16], where optimization produced a
significant impact on Yahoo!’s revenue.

We stress that unlike much of the mechanism design
literature (see [15]), we are not searching for the optimal
revenue maximization truthful mechanism. Rather, our goal
is to maximize the seller’s revenue in a given, yet very
popular, mechanism of second-price auction with a reserve
price. In our model, the seller has only information about the
auction price (and possibly about the number of bidders that
participated in the auction). We assume all buyers have the
same unknown bid distribution, but we make no assumptions
about this distribution, only that the bids are from a bounded
domain. In particular, we do not assume that the distribution
has a monotone hazard rate, a traditional assumption in the
economics literature. The main modeling assumption we rely
upon is that buyers draw their value independently from the
same distribution (i.e., bids are independent and identically
distributed). This is a reasonable assumption when the auction
is open to a wide audience of potential buyers. In this case, it
is plausible that the seller’s strategy of choosing reserve prices
has no influence on the distribution of bids.

A. Our Results

The focus of our work is on setting the reserve price in a
second-price auction, in order to maximize the seller’s revenue.
Our main result is an online algorithm that optimizes the
seller’s reserve price based only on the observation of the
seller’s actual revenue at each step. We show that after T steps

2A mechanism is truthful if it is a dominant action for the bidders to bid
their private value.
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(T repetitions of the auction) our algorithm has a regret of
only ˜O(

√
T ). Namely, using our online algorithm the seller

has an average revenue per auction that differs from that of
the optimal reserve price by at most ˜O(1/

√
T ), assuming the

value of any bid lies in a bounded range interval.
Our algorithm is rather easy to explain and motivate at

a high level. Let us start with a simple O(T 2/3) regret
minimization algorithm, similar to [12]. The algorithm
discretizes the range of reserve prices to �(T 1/3) price bins,
and uses some efficient multi-armed bandit algorithm (see [5])
over the bins. It is easy to see that lowering the optimal
reserve price by ε will result in an average loss of at most ε.3

This already shows that vanishing average regret is achievable,
specifically, a regret of O(T 2/3). Our main objective is to
improve over this basic algorithm and achieve a regret of
˜O(

√
T ).

An important observation to understand our algorithm is
that by setting the reserve price low (say, zero) we observe
the second-highest bid, since this will be the price in the
auction. Hence, with enough observations, we can reconstruct
the distribution of the second-highest bid. Given the assump-
tion that the bidders’ bid distributions are identical, we can
recover the bid distribution of an individual bidder, and the
distribution of the highest bid. Clearly, a good approximation
to this distribution results in a good approximation to the
optimal reserve price. Unfortunately, this simple method does
not improve the regret, since a good approximation of the
second-highest bid distribution incurs a significant loss in the
exploration, and results in a regret of O(T 2/3), similar to
the regret of the discretization approach.

Our main solution is to perform only a rough estimate of
the second-highest bid distribution. Using this rough estimate,
we can set a better reserve price. In order to facilitate future
exploration, it is important to set the new reserve price to the
lowest potentially optimal reserve price. The main benefit is
that our new reserve price has a lower regret with respect to the
optimal reserve price, and we can bound this improved regret.
We continue in this process, getting improved approximations
to the optimal reserve price, and accumulating lower regret
(per time step) in each successive iteration, resulting in a total
regret of ˜O(

√
T ) for T time steps.

Our ability to reconstruct the bid distribution depends on
our knowledge about the number of participating bidders in
the auction. Our simpler case involves a known number of
bidders (Section II). We later extend the algorithm and analysis
to the case where there is stochasticity in the number of
bidders through a known distribution (Section III). In both
cases we prove a regret bound of ˜O(

√
T ). This bound is

optimal up to logarithmic factors. In fact, simple choices of
the bid distribution exist that force any algorithm to have order√

T regret, even when there are only two bidders whose bids
are revealed to the algorithm at the end of each auction.

Finally, in Section IV we present two extensions. One is
for the case when the regret analysis refers to the stronger
notion of realized regret (Section IV-A), the other extension

3Note that the setting is not symmetric, and increasing by ε might lower
the revenue significantly, by disqualifying many attractive bids.

is a standard twist that removes any prior knowledge on the
time horizon T (Section IV-B).

B. Related Work

There is a vast literature in Algorithmic Game Theory on
second price auctions, with sponsored search as a motivating
application. An important thread of research concerns the
design of truthful mechanisms to maximize the revenue
in the worst case, and the derivation of competitive ratio
bounds, see [10]. A recent related work [8] discusses revenue
maximization in a Bayesian setting. Their main result is a
mechanism that achieves a constant approximation ratio with
respect to any prior distribution using a single sample. They
also show that with additional samples, the approximation ratio
improves, and in some settings they even achieve a 1 − ε
approximation. In contrast, we assume a fixed but unknown
prior distribution, and consider the rate at which we can
approximate the optimal reserve price. In our setting, as we
mentioned before, achieving a 1 − ε approximation, even for
ε = T −1/3, is straightforward, and the main focus of this paper
is to show that a rate of ε = T −1/2 is attainable.

Item pricing, which is related to regret minimization under
partial observation [5], has also received significant attention.
A specific related work is [12], where the effect of knowing
the demand curve is studied. (The demand curve is equivalent
to the bid distribution.) The mechanism discussed in [12] is a
posted price mechanism, and the regret is computed in both
stochastic and adversarial settings. In the stochastic setting
they assume that the expected revenue function is strictly
concave, and use the UCB algorithm of [3] over discretized
bid values to derive their strategy. Again, we do not make such
assumptions in our work.

The question of the identification of the buyers’ utilities
given the auction outcome has been studied in the economics
literature. The main goal is to recover in the limit the buyers’
private value distribution (i.e., the buyers’ utility function),
given access to the resulting auction price (i.e., the auction
outcome) and assuming that bidders utilities are independent
and identically distributed [1], [9]. It is well known in the
economics literature that given a bid distribution that has a
monotone hazard rate, there is a unique reserve price maxi-
mizing the expected revenue in a second-price auction, and this
optimal price is independent of the number of bidders [14].
As we do not make the monotone hazard rate assumption, in
our case the optimal price for each auction might depend on
the actual (varying) number of bidders. Because the seller does
not observe the number of bidders before setting the reserve
price (Section III), we prove our results using the regret to
the best reserve price, with respect to a known prior over the
number of bidders. As we just argued, depending on the bid
distribution, this best reserve price need not be the same as the
optimal reserve price one could set when knowing the actual
number of bidders in advance.

There have been some works [7], [11], [20] on optimizing
the reserve price, concentrating on more involved issues that
arise in practice, such as discrete bids, nonstationary behavior,
hidden bids, and more. While we are definitely not the first
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Fig. 1. The revenue function R for m = 5 bids of value B(1) = 0.7,

B(2) = 0.5, B(3) = 0.35, B(4) = 0.24, B(5) = 0.05. For p ∈ [0, B(2)
]

the
revenue is constant, R(p) = B(2). For p ∈ [B(2), B(1)

]

the revenue grows
linearly, R(p) = p, For p ∈ [B(1), 1

]

the revenue is null, R(p) = 0.

ones to consider approximating optimal reserve prices in a
second-price auction, to the best of our knowledge this is the
first work that derives formal and concrete convergence rates.

Finally, note that any algorithm for one-dimensional
stochastic bandit optimization could potentially be applied to
solve our revenue maximization problem. Indeed, whenever
a certain reserve price is chosen, the algorithm observes a
realization of the associated stochastic revenue. While many
algorithms exist that guarantee low regret in this setting, they
all rely on specific assumptions on the function to optimize
(in our case, the expected revenue function). See [6] obtains
a regret of order

√
T under smoothness and strong concavity.

The authors of [2] achieve a regret worse only by logarithmic
factors without concavity, but assuming other conditions on
the derivatives. The work [21] shows a bound of the same
order just assuming unimodality. The work [4] also obtains the
same asymptotics ˜O(

√
T ) on the regret using a local Lipschitz

condition. The approach developed in this paper avoids making
any assumption on the expected revenue function, such as
Lipschitzness or bounded number of maxima. Instead, it
exploits the specific feedback model provided by the second-
price auction in order gain information about the optimum.

II. KNOWN NUMBER OF BIDDERS

We first show our results for the case where the number
of bidders m is known and fixed. In Section III we will
remove this assumption, and extend the results to the case
when the number of bidders is a random variable with a known
distribution. Fortunately, most of the ideas of the algorithm can
be explained and nicely analyzed in the simpler case.

A. Preliminaries

The auctioneer organizes an auction about an item to
be sold. He collects m ≥ 2 bids B1, B2, . . . , Bm which
are i.i.d. bounded random variables (for definiteness, we let
Bi ∈ [0, 1] for i = 1, . . . , m) whose common cumulative
distribution function F is arbitrary and unknown. We let

Fig. 2. At the beginning of Stage i + 1, Algorithm 1 has at its disposal
an estimate μ̂i (here represented by the piecewise constant solid line) of the
actual expected revenue function μ (the thick solid line). The upper horizontal
dashed line indicates the estimate μ̂i

(

p̂∗
i

)

of the actual maximum μ(p∗)
(recall that p̂∗

i is a maximizer of μ̂i (·)). The lower horizontal dashed line
indicates the lower end of the confidence interval for μ̂i

(

p̂∗
i

)

. This defines
the next set Pi+1 of candidate optimal reserve prices, here marked by the
thick solid line on the price axis, and the next reserve price p̂i+1 , which is
the lowest price in Pi+1. In this figure, p̂i+1 = 0. Also, for simplicity, we
have disregarded the further constraint ̂F2,i (p) ≤ 1 − α.

B(1), B(2), . . . , B(m) denote the corresponding order statistics
B(1) ≥ B(2) ≥ · · · ≥ B(m).

In this simplified setting, we consider a protocol in which
a learning algorithm (or a “mechanism”) is setting a reserve
price (i.e., a minimal price) p ∈ [0, 1] for the auction. The
algorithm then observes a revenue R(p) = R(p ; B1, . . . , Bm)
defined as follows:

R(p) =
⎧

⎨

⎩

B(2) if p ≤ B(2)

p if B(2) < p ≤ B(1)

0 if p > B(1).

In words, if the reserve price p is higher than the highest bid
B(1), the item is not sold, and the auctioneer’s revenue is zero;
if p is lower than B(1) but higher than the second-highest bid
B(2) then we sell at the reserve price p (i.e., the revenue is p);
finally, if p is lower than B(2) we sell the item to the bidder
who issued the highest bid B(1) at the price of the second-
highest bid B(2) (hence the revenue is B(2)). Figure 1 gives a
pictorial illustration of the revenue function R(p).

The expected revenue μ(p) = E[R(p)] is the expected
value of the revenue gathered by the auctioneer when the
algorithm plays price p, the expectation being over the bids
B1, B2, . . . Bm . Let

p∗ = argmax
p∈[0,1]

μ(p)

be the optimal price for the bid distribution F . We also write
F2 to denote the cumulative distribution function of B(2).
We can write the expected revenue as

μ(p) = E
[

B(2)
]+ E

[

p −B(2)
∣

∣B(2) < p ≤ B(1)
]

× P
[

B(2) < p ≤ B(1)
]

− E
[

B(2)
∣

∣p > B(1)
]

P
[

p > B(1)
]

where the first term is the baseline, the revenue of a second-
price auction with no reserve price. The second term is the
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gain due to the reserve price (increasing the revenue beyond
the second-highest bid). The third term is the loss due to the
possibility that we will not sell (when the reserve price is
higher than the highest bid). The following fact streamlines the
computation of μ(p). All proofs are given in the appendices.

Fact 1: With the notation introduced so far, we have

μ(p) = E
[

B(2)
]+
∫ p

0
F2(t) dt − p

(

F(p)
)m

where the expectation E[ · ] is over the m bids B1, B2, . . . , Bm.
The algorithm interacts with its environment (the bidders)
in a sequential fashion. At each time step t = 1, 2, . . . the
algorithm sets a price pt and receives revenue Rt (pt ) =
R(pt ; Bt,1, . . . , Bt,m) which is a function of the random
bids Bt,1, . . . , Bt,m at time t . The price pt depends on past
revenues Rs(ps) for s < t , and therefore on past bids.
Given a sequence of reserve prices p1, . . . , pT , we define the
(cumulative) expected regret as

T
∑

t=1

(

E
[

Rt (p∗)
]− Et [Rt (pt)]

) =
T
∑

t=1

(

μ(p∗) − μ(pt)
)

(1)

where the expectation Et = Et [ · | p1, . . . , pt−1] is over
the random bids at time t , conditioned on all past prices
p1, . . . , pt−1 (i.e., conditioned on the past history of the
bidding process). This implies that the expected regret (1) is
indeed a random variable, as each pt depends on the past
random revenues. Our goal is to devise an algorithm whose
regret after T steps is ˜O(

√
T ) with high probability, and with

as few assumptions as possible on F . We see in the sequel
that, when T is large, this goal can actually be achieved with
no assumptions whatsoever on the underlying distribution F .
Moreover, in Section IV-A we use a uniform convergence
argument to show that the same regret bound ˜O(

√
T ) holds

with high probability for the realized regret

max
p∈[0,1]

T
∑

t=1

(

Rt (p) − Rt (pt )
)

.

Note that here the realized revenue of the seller is compared
against the best reserve price on each sequence of bid realiza-
tions. Therefore, the realized regret is a much stronger notion
of regret than the expected regret (1).

It is well known that from the distribution of any order
statistics one can reconstruct the underlying distribution.
Unfortunately, we do not have access to the true distribution of
order statistics, but only to an approximation thereof. We first
need to show that a small deviation in our approximation will
have a small effect on our final result. The following prelimi-
nary lemma will be of great importance in our approximations.
It shows that if we have a small error in the approximation
of F2(p) we can recover μ(p) with a small error. The
function β(·) therein maps (F(·))m to F2(·). In fact, since
the bids are independent with the same distribution, we have
F2(p) = m (F(p))m−1(1 − F(p)) + (F(p))m = β

(

(F(p))m
)

.
The main technical difficulty arises from the fact that the
function β−1(·) we use in reconstructing

(

F(·))m from F2(·)—
see pseudocode in Algorithm 1, is not a Lipschitz function.

Lemma 1: Fix an integer m ≥ 2 and consider the function

β(x) = m x
m−1

m − (m − 1) x, x ∈ [0, 1].
Then β−1(·) exists in [0, 1]. Moreover, if a ∈ (0, 1) and x ∈
[0, 1] are such that a − ε ≤ β(x) ≤ a + ε for some ε ≥ 0,
then

β−1(a) − 2 ε√
1 − a

≤ x ≤ β−1(a) + 2 ε√
1 − a

. (2)

In a nutshell, this lemma shows how approximations in the
value of β(·) turn into approximations in the value of β−1(·).
Because the derivative of β−1 is infinite at 1, we cannot hope
to get a good approximation unless a is bounded away from 1.
For this very reason, we need to make sure that our function
approximations are only applied to cases where the arguments
are not too close to 1. The approximation parameter α in the
pseudocode of Algorithm 1 serves this purpose.

B. The Algorithm

Our algorithm works in stages, where the same price
is consistently played during each stage.4 Stage 1 lasts T1
steps, during which the algorithm plays pt = p̂1 for all
t = 1, . . . , T1. Stage 2 lasts T2 steps, during which the
algorithm plays pt = p̂2 for all t = T1 + 1, . . . , T1 + T2,
and so on, up to S stages. Overall, the regret suffered by this
algorithm can be written as

S
∑

i=1

(

μ(p∗) − μ( p̂i)
)

Ti

where the sum is over the S stages. The length Ti of each
stage will be set later on, as a function of the total number
of steps T . The reserve prices p̂1, p̂2, . . . are set such that
0 = p̂1 ≤ p̂2 ≤ · · · ≤ 1. At the end of each stage i , the
algorithm computes a new estimate μ̂i of the expected revenue
function μ in the interval [ p̂i , 1], where p∗ is likely to lie.
This estimate depends on the empirical cumulative distribution
function ̂F2,i of F2 computed during stage i in the interval
[ p̂i , 1]. The algorithm’s pseudocode is given in Algorithm 1.
The quantity Cδ,i (p) therein is defined as

Cδ,i (p) = p

√

2
(

1 − ̂F2,i (p)
)

Ti
ln

6S

δ
.

Cδ,i (p) is a confidence interval (at confidence level 1−δ/(3S))
for the point estimate μ̂i (p) in stage i , where S = S(T ) is
either the total number of stages or an upper bound thereof.

Stage 1 is a seed stage, where the algorithm computes a first
approximation μ̂1 of μ. Since the algorithm plays p̂1 = 0, and
R(0) = B(2), during this stage T1 independent realizations of
the second-bid variable B(2) are observed. Hence the empirical
distribution ̂F2,1 in Algorithm 1 is a standard cumulative
empirical distribution function based on i.i.d. realizations
of B(2). The approximation μ̂1 is based on the corresponding
expected revenue μ contained in Fact 1, where β(·) is the
function defined in Lemma 1, mapping (F(p))m to F2(p).

4For simplicity, we have disregarded rounding effects in the computation
of the integer stage lengths Ti .
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Algorithm 1 Regret Minimizer
Input: Confidence level δ ∈ (0, 1], approximation parameter α ∈ (0, 1], time horizon T ;
Let stage lengths Ti = T 1−2−i

for i = 1, 2, . . .
Stage 1:

• For all t = 1, . . . , T1, play pt = p̂1 = 0 and observe revenues R1(0), . . . , RT1(0).
• Compute, for x ∈ [0, 1], empirical distribution

̂F2,1(x) = 1

T1

∣

∣

∣

{

t = 1, . . . , T1 : Rt (0) ≤ x
}

∣

∣

∣.

• Compute, for p ∈ [0, 1], approximation

μ̂1(p) = E
[

B(2)
]+
∫ p

0

̂F2,1(t) dt − p β−1(
̂F2,1(p)

)

.

For Stage i = 2, 3, . . .

• For all t = 1 +∑i−1
j=1 Tj , . . . ,

∑i
j=1 Tj , play pt = p̂i , and observe revenues R1( p̂i), . . . , RTi ( p̂i),

where p̂i is computed as follows:

– Compute maximizer
p̂∗

i−1 = argmax
p∈[ p̂i−1,1] : ̂F2,i−1(p)≤1−α

μ̂i−1(p).

– Let Pi =
{

p ∈ [ p̂i−1, 1] : μ̂i−1(p) ≥ μ̂i−1( p̂∗
i−1) − 2Cδ,i−1( p̂∗

i−1) − 2Cδ,i−1(p)
}

.

– Set p̂i = min Pi
⋂{

p : ̂F2,i−1(p) ≤ 1 − α
}

.

• Compute, for x ∈ [ p̂i , 1], empirical distribution

̂F2,i (x) = 1

Ti

∣

∣

∣

{

t = 1, . . . , Ti : Rt ( p̂i ) ≤ x
}∣

∣

∣.

• Compute, for p ∈ [ p̂i , 1], approximation

μ̂i (p) = E
[

B(2)
]+
∫ p̂i

0
F2(t) dt +

∫ p

p̂i

̂F2,i (t) dt − p β−1(
̂F2,i (p)

)

.

Note that if β−1 is available, maximizing the above function
(done in Stage 2) can easily be computed from the data. The
presence of the unknown constant E

[

B(2)
]

is not a problem
for this computation.5 In Stage 2 (encompassing trials t =
T1 + 1, . . . , T1 + T2) the algorithm calculates the empirical
maximizer

p̂∗
1 = argmax

p∈[0,1] : ̂F2,1(p)≤1−α

μ̂1(p)

then computes the set of candidate optimal reserve prices

P2 = {p ∈ [0, 1] : μ̂1(p) ≥ μ̂1( p̂∗
1) − 2Cδ,1( p̂∗

1) − 2Cδ,1(p)
}

and sets the reserve price p̂2 to be the lowest one in P2, subject
to the additional constraint that6 ̂F2,1(p) ≤ 1 − α. Price p̂2
is played during all trials within Stage 2. The corresponding
revenues Rt ( p̂2), for t = 1, . . . , T2, are gathered and used
to construct an empirical cumulative distribution ̂F2,2 and an
approximate expected revenue function μ̂2 to be used only in

5Note that in the algorithm (subsequent Stage 2) we either take the
difference of two values μ̂1(p1)−μ̂1(p2), in which case the constant cancels,
or maximize over μ̂1(p), in which case the constant does not change the
outcome.

6Note that the intersection is not empty, since p̂∗
1 is in the intersection.

the subinterval7 [ p̂2, 1].
In order to see why ̂F2,2 and μ̂2 are useful only on [ p̂2, 1],

observe that

R( p̂2) =
{

p̂2 or 0 if B(2) < p̂2

B(2) if B(2) ≥ p̂2.

Thus, for any x ≥ p̂2 we have that

P(R( p̂2) ≤ x) = P(B(2) ≤ x).

Hence, if we denote by R1( p̂2), . . . , RT2( p̂2) the revenues
observed by the algorithm during Stage 2, the empirical
distribution function

̂F2,2(x) = 1

T2

∣

∣

{

t = 1, . . . , T2 : Rt ( p̂2) ≤ x
}∣

∣

approximates F2(x) only for x ∈ [ p̂2, 1].
All other stages i > 2 proceed similarly, each stage i relying

on the existence of empirical estimates ̂F2,i−1, μ̂i−1, and p̂i−1
delivered by the previous stage i −1. Figure 2 gives a pictorial
explaination of the way the algorithm works.

7Once again, computing the argmax of μ̂2 over [ p̂2, 1] as well as the set
of candidates P3 (done in the subsequent Stage 3) is not prevented by the

presence of the unknown constants E
[

B(2)
]

and
∫ p̂2

0 F2(t) dt therein.
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C. Regret Analysis

We start by showing that for all stages i the term 1−̂F2,i (p)
in the denominator of Cδ,i (p) can be controlled for all p such
that μ(p) is bounded away from zero. Recall that S = S(T )
denotes (an upper bound on) the total number of stages.

Lemma 2: With the notation introduced so far, for any fixed
stage i ,

1 − ̂F2,i (p) ≥ μ(p)2

6
−
√

1

2Ti
ln

6S

δ

holds with probability at least 1 − δ/(3S), uniformly over
p ∈ [ p̂i , 1], conditioned on all past stages.

In the sequel, we use Lemma 2 with p = p∗ and assume
that 1 − ̂F2,i (p∗) ≥ α holds for each stage i with probability
at least 1 − δ/(3S), where the approximation parameter α is
defined as

α = μ(p∗)2

6
−
√

1

2 mini Ti
ln

6S

δ

provided p∗ ∈ [ p̂i , 1]. In order to ensure that α > 0, it suffices
to have μ(p∗) > 0 and T large enough —see Theorem 1
below. Recall that it is important to guarantee that ̂F2,i (p) be
bounded away from 1 for all arguments p which we happen
to evaluate ̂F2,i at. This is because the function β−1 has an
infinite derivative at 1.

The following lemma is crucial to control the regret of
Algorithm 1. It states that the approximation in stage i is
accurate. In addition, it bounds the empirical regret in stage i,
provided our current reserve price is lower than the optimal
reserve price. The proof is a probabilistic induction over
stages.

Lemma 3: The event
∣

∣μ(p) − μ̂i (p)
∣

∣ ≤ 2Cδ,i (p) for all p ∈ [ p̂i , 1] (3)

holds with probability at least 1 − δ/3 simultaneously in all
stages i = 1, . . . , S. Moreover, the events

p∗ ≥ p̂i

0 ≤ μ̂i ( p̂∗
i ) − μ̂i (p∗) ≤ 2Cδ,i ( p̂∗

i ) + 2Cδ,i (p∗) (4)

both hold with probability at least 1 − δ simultaneously in all
stages i = 1, . . . , S.

The next theorem proves our regret bound under the
assumption that μ(p∗) is nonzero. Note that μ(p∗) = 0
corresponds to the degenerate case μ(p) = 0 for all p ∈ [0, 1].
Under the above assumption, the theorem states that when
the horizon T is sufficiently large, then with high probability
the regret of Algorithm 1 is O(√T log log log T (log log T )

) =
˜O(√T

)

. It is important to remark that in this bound there is
no explicit dependence on the number m of bidders.

Theorem 1: For any distribution F of the bids and any
m ≥ 2 such that μ(p∗) > 0, we have that Algorithm 1
operating on any time horizon T such that

T >
1

μ(p∗)8

(

72 ln
6(1 + log2 log2 T )

δ

)2

using approximation parameter α ≥ μ(p∗)2/12 has regret

O
(
√

T (log log log T + log 1/δ) (log log T )

μ(p∗)

)

= ˜O
(√

T log 1/δ

μ(p∗)

)

with probability at least 1 − δ.
The proof of this theorem follows by applying at each

stage i the uniform approximation delivered by Lemma 3 on
the accuracy of empirical to true regret. This would bound

the regret in stage i by 8
√

1
αTi−1

ln 6S
δ —see the proof in

Appendix V. We then set the length Ti of stage i as Ti =
T 1−2−i

, i.e., T1 = √
T , T2 = T 3/4, T3 = T 7/8, . . ., which

implies that the total number of stages S is O(log log T ).
Finally, we sum the regret over the stages to derive the
theorem.

Two remarks are in order at this point. First, the reader
should observe that the bound in Theorem 1 does not explicitly
contain a dependence on m; this is mostly due to the fact
that the approximation result in Lemma 1 is in turn inde-
pendent of m. The number of bidders m shows up implicitly
only through μ(p∗) —see also the discussion at the end of
Section V. Second, the way we presented it makes Algorithm 1
depending on the time horizon T , though this prior knowledge
is not strictly required: In Section IV-B we show a standard
“doubling trick” for making Algorithm 1 independent of the
time horizon T .

D. Lower Bounds

The next result shows that the
√

T dependence of the
regret on the time horizon T is not a consequence of our
partial information setting. Indeed, this dependence cannot be
removed even if the mechanism is allowed to observe the
actual bids after setting the reserve price in each repetition
of the auction.

Theorem 2: There exists a distribution of bids such that any
deterministic algorithm operating with m = 2 bidders is forced
to have expected regret

T
∑

t=1

(

μ(p∗) − μ(pt)
)

= �
(
√

T
)

.

Although the result is proven for deterministic algorithms, it
can easily be extended to randomized algorithms through a
standard argument.

III. RANDOM NUMBER OF BIDDERS

We now consider the case when the number of bidders m
in each trial is a random variable M distributed according
to a known discrete distribution Q over {2, 3, 4, . . .}. The
assumption that Q is known is realistic: one can think of
estimating it from historical data that might be provided by
the auctioneer. On each trial, the value M = m is randomly
generated according to Q, and the auctioneer collects m bids
B1, B2, . . . , Bm . For given m, these bids are i.i.d. bounded
random variables B ∈ [0, 1] with unknown cumulative
distribution F , which is the setting considered in Section II.
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For simplicity, we assume that M is independent of the random
variables Bi . For fixed M = m, we denote by B(1)

m ≥
B(2)

m ≥ · · · ≥ B(m)
m the corresponding order statistics.

Our learning algorithm is the same as before: In each time
step, the algorithm is requested to set reserve price p ∈ [0, 1]
and, for the given realization of M = m, only observes the
value of the revenue function Rm(p) = R(p; B1, B2, . . . , Bm)
defined as

Rm(p) =

⎧

⎪

⎨

⎪

⎩

B(2)
m if p ≤ B(2)

m

p if B(2)
m < p ≤ B(1)

m

0 if p > B(1)
m

without knowing the specific value of m that generated this
revenue. Namely, after playing price p the algorithm is observ-
ing an independent realization of the random variable RM (p).
The expected revenue μ(p) is now

μ(p) = EM E
[

RM (p)
] =

∞
∑

m=2

Q(m) E
[

Rm(p)
∣

∣M = m
]

where the inner expectation E[ · | M = m] is over the random
bids B1, B2, . . . , Bm .

Again, we want to minimize the expected regret with respect
to the optimal reserve price

p∗ = argmax
p∈[0,1]

μ(p)

for the bid distribution F , averaged over the distribution Q
over the number of bidders M , where the expected regret over
T time steps is

T
∑

t=1

(

μ(p∗) − μ(pt)
)

and pt is the price set by the algorithm at time t .
In Section IV-A we show that the same regret bound holds
for the realized regret

max
p∈[0,1]

T
∑

t=1

(

RMt
t (p) − RMt

t (pt )
)

where Mt is the number of bidders at time t .
Let F2,m denote the cumulative distribution function of B(2)

m .
We use EM

[

F2,M
]

(x) to denote the mixture distribution
∑∞

m=2 Q(m)F2,m(x). Likewise,

EM
[

F M](x) =
∞
∑

m=2

Q(m)
(

F(x)
)m

.

Relying on Fact 1, one can easily see that

μ(p) = EME
[

B(2)
M

]+
∫ p

0
EM
[

F2,M
]

(t) dt

−p EM
[

F M ](p). (5)

As in Section II, our goal is to devise an online algorithm
whose expected regret is of the order

√
T , with as few

assumptions as possible on F and Q.

We first extend Lemma 1 to handle this more general
setting.8

Lemma 4: Let T be the probability generating function
of M,

T (x) =
∞
∑

m=2

Q(m) xm

and define the auxiliary function

A(x) = T (x) + (1 − x) T ′(x)

where, for both functions, we let the argument x range in
[0,1]. Then T and A are bijective mappings from [0,1] onto
[0,1] and both T −1 and A−1 exist in [0,1]. Moreover, letting
a ∈ (0, 1), and 0 ≤ ε < 1 − a, if x is such that

a − ε ≤ A(T −1(x)) ≤ a + ε

then

T (A−1(a)) − ε E[M]
1 − (a + ε)

≤ x ≤ T (A−1(a))+ ε E[M]
1 − (a + ε)

.

(6)

In addition, if 9

(T ′′(x))2 (1 − x) + T ′(x)T ′′(x) ≥ T ′(x)T ′′′(x)(1 − x) (7)

holds for all x ∈ [0, 1] then, for any a ∈ (0, 1) and ε ≥ 0,

T (A−1(a)) − ε

1 − a
≤ x ≤ T (A−1(a)) + ε

1 − a
. (8)

Observe that T (·) and A(·) in this lemma have been defined
in such a way that10

EM [F2,M ](p) = A(F(p))

and

EM [F M ](p) = T (F(p)).

Hence, EM [F M ](p) in (5) satisfies

EM [F M ](p) = T
(

A−1(
EM [F2,M ](p)

)

)

.

In particular, when P(M = m) = 1 as in Section II, we obtain
T (x) = xm and A(x) = m xm−1 − (m − 1) xm . Thus, in
this case A

(

T −1(·)) is the function β(·) defined in Lemma 1,
and the reconstruction function β−1(·) we used throughout
Section II is T

(

A−1(·)). Because this is a more general setting
then the one in Section II, we do still have the technical issue
of insuring that the argument of this recostruction function is
not too close to 1.

As in the fixed m case, the algorithm proceeds in stages.
In each stage i the algorithm samples the function EM [F2,M ]

8More precisely, in dealing with a more general setting we only obtain a
slightly looser result than Lemma 1.

9Condition (7) is a bit hard to interpret: It is equivalent to the convexity
of the function T (A−1(x)) for x ∈ [0, 1] (see the proof of Lemma 4
in Appendix V), and it can be shown to be satisfied by many standard
parametric families of discrete distributions Q, e.g., Uniform, Binomial,
Poisson, Geometric. There are, however, examples where this condition does
not hold. For instance, the distribution Q, where Q(2) = 0.4, Q(8) = 0.6,
and Q(m) = 0 for any m 	= 2, 8 does not satisfy (7) for x = 0.6, i.e., it yields
a function T (A−1(x)) which is not convex on x = 0.6.

10Recall from Section II-A that, for any fixed M = m, we have F2,m(p) =
m (F(p))m−1(1 − F(p)) + (F(p))m .
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by sampling RM (p) at appropriate values of p. This allows
it to build an empirical distribution ̂F2,i and to reconstruct
the two unknown functions EM [F2,M ] and EM [F M ] occur-
ring in (5) over an interval of reserve prices that is likely
to contain p∗. Whereas EM [F2,M ] is handled directly, the
reconstruction of EM [F M ] requires us to step through the
functions T and A according to the following scheme:

̂F2,i (p) ≈ EM [F2,M ](p) = A(F(p))

⇐⇒ A−1(̂F2,i (p)) ≈ F(p)

⇐⇒ T
(

A−1(̂F2,i (p))
) ≈ T (F(p)) = EM [F M ](p).

Namely, in stage i we sample EM [F2,M ] to obtain the empiri-
cal distribution ̂F2,i , and then estimate EM [F M ] in (5) through
T (A−1(̂F2,i (·))).

In order to emphasize that the role played by the composite
function A(T −1(·)) here is the very same as the function β(·)
in Section II, we overload the notation and define in this
section β(x) = A(T −1(x)), where T and A are given
in Lemma 4. Moreover, we define for brevity F̄2(x) =
EM [F2,M ](x).

With this notation in hand, the detailed description of the
algorithm becomes very similar to the one in Section II-B.
Hence, in what follows we only emphasize the differences,
which are essentially due to the modified confidence interval
delivered by Lemma 4, as compared to Lemma 1.

In particular, if we rely on (6), the new confidence interval
size for Stage i depends on the empirical distribution ̂F2,i

through the quantity (we again overload the notation)

Cδ,i (p) = p E[M]
1 − ̂F2,i (p) −

√

1
2 Ti

ln 6S
δ

√

2

Ti
ln

6S

δ

with

Ti >
1

2(1 − ̂F2,i (p))2
ln

6S

δ
.

Similarly, if we rely on (8), we have instead

Cδ,i (p) = p

1 − ̂F2,i (p)

√

1

2 Ti
ln

6S

δ
.

The resulting pseudocode is the same as in Algorithm 1,
where the observations Rt ( p̂i) therein have to be interpreted
as distributed i.i.d. as RM ( p̂i), and E[B(2)] and F2 in μ̂i

are replaced by their M-average counterparts EM E
[

B(2)
M

]

and F̄2. We call the resulting algorithm the Generalized
Algorithm 1.

As for the analysis, Lemma 2 is replaced by the following
(because of notation overloading, the statement is the same as
that of Lemma 2, but the involved quantities are different, and
so is the proof in the appendix).

Lemma 5: With the notation introduced at the beginning of
this section, if S = S(T ) is (an upper bound on) the total
number of stages, we have that, for any fixed stage i,

1 − ̂F2,i (p) ≥ μ(p)2

6
−
√

1

2Ti
ln

6S

δ

holds with probability at least 1 − δ/(3S), uniformly over
p ∈ [ p̂i , 1], conditioned on all past stages.

Then an easy adaptation of Lemma 3 leads to the following
expected regret bound. The proof is very similar to the proof
of Theorem 1, and is therefore omitted.

Theorem 3: With the notation introduced at the beginning
of this section, for any pair of distributions F and Q such
that μ(p∗) > 0 we have that the Generalized Algorithm 1,
operating on any time horizon T satisfying

T >
1

μ(p∗)8

(

288 ln
6(1 + log2 log2 T )

δ

)2

and with approximation parameter α ≥ μ(p∗)2/12, has regret

A

μ(p∗)2 × O
(

√

T (log log log T + log 1/δ) (log log T )
)

= A

μ(p∗)2 × Õ
(

√

T log 1/δ
)

with probability at least 1 − δ, where A = E[M] if (6) holds
and A = 1 if (8) holds.

IV. EXTENSIONS

This section further extends the results contained in the
previous two sections. First, we show how to bound with
high probability the realized regret (Section IV-A). Second, we
show how to turn Algorithm 1 into an algorithm that does not
rely on prior knowledge of the time horizon T (Section IV-B).

A. Bounding the Realized Regret

In this section, we show how to bound in probability the
realized regret

max
p∈[0,1]

T
∑

t=1

RMt
t (p) −

T
∑

t=1

RMt
t (pt)

suffered by the Generalized Algorithm 1. As a special case,
this clearly applies to Algorithm 1, too.

We need the following definitions and results from empirical
process theory—see [19]. Let F be a set of [0, 1]-valued func-
tions defined on a common domain X. We say that F shatters
a sequence x1, . . . , xn ∈ X if there exists r1, . . . , rn ∈ R

such that for each (a1, . . . , an) ∈ {0, 1}n there exists f ∈ F
for which f (xi ) > ri iff ai = 1 for all i = 1, . . . , n. The
pseudo-dimension [17] of F , which is defined as the length
of the longest sequence shattered by F , controls the rate of
uniform convergence of means to expectations in F . This is
established by the following known lemma, which combines
Dudley’s entropy bound with a bound on the metric entropy
of F in terms of the pseudo-dimension—see [18], [19].

Lemma 6: Let X1, X2, . . . be i.i.d. random variables
defined on a common probability space and taking values in X.
There exists a universal constant C > 0 such that, for any fixed
T and δ,

sup
f ∈F

∣

∣

∣

∣

∣

T
∑

t=1

f (Xt ) − T E[ f ]
∣

∣

∣

∣

∣

≤ C

√

dT ln
1

δ
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Algorithm 2 Anytime Regret Minimizer
Input: Confidence level δ ∈ (0, 1], approximation parameter α ∈ (0, 1];
For Block r = 0, 1, 2, . . .

Run Algorithm 1 with input parameters

block r confidence δr = δ

(r + 1)(r + 2)
, approximation parameter α, block r horizon Tr = 2r .

with probability at least 1−δ, where d is the pseudo-dimension
of F .

Recall that EM E
[

RM (p)
] = μ(p) for all p ∈ [0, 1]. Let

R = {RM (p) : p ∈ [0, 1]} be the class of revenue functions
indexed by reserve prices p ∈ [0, 1]. Hence, for each p,
RM (p) is a [0, 1]-valued function of the number M of bidders
and the bids B1, . . . , BM . In the appendix we prove the
following bound.

Lemma 7: The pseudo-dimension of the class R is 2.
As announced, the following is the main result of this

section, whose proof combines Lemma 6, Lemma 7, together
with a standard martingale argument.

Theorem 4: Under the assumptions of Theorem 3
(Section III), the actual regret of Generalized Algorithm 1
satisfies

max
p∈[0,1]

T
∑

t=1

RMt
t (p)−

T
∑

t=1

RMt
t (pt ) = A

μ(p∗)2 ×˜O
(
√

T log
1

δ

)

with probability at least 1 − δ, where A = E[M] if (6) holds
and A = 1 if (8) holds.

B. The Case of Unknown Time Horizon T

We use a standard “doubling trick” argument—
see [5, Sec. 2.3] applied to Algorithm 1 (the same argument
applies to the Generalized Algorithm 1). The idea is to
partition the sequence 1, 2, . . . of time steps into blocks of
geometrically growing length, where each block r = 0, 1, . . .
starts at time 2r and ends at time 2r+1 −1. At the beginning of
each new block r , we restart Algorithm 1 from scratch, using
Tr = 2r+1 − 1 − 2r + 1 = 2r as new horizon parameter, and
setting the current confidence level as δr = δ

/

(r + 1)(r + 2),
where δ is the desired confinence level. The algorithm’s
pseudocode is given in Algorithm 2.

Using the standard analysis for the doubling trick,
Algorithm 2 is easily see to achieve the following bound on
the expected regret.

Theorem 5: For any distribution F of the bids and any
m ≥ 2 such that μ(p∗) > 0, we have that Algorithm 2 using
approximation parameter α ≥ μ(p∗)2/12 has regret

O
(

1

μ(p∗)8 log2
(

T log log T

δ

)

+
√

T log log T

μ(p∗)

√

log
log T

δ

)

with probability at least 1 − δ simultaneously over all T .
Clearly enough, combining with Theorem 4 a similar state-

ment can be given for the realized regret as well.

V. CONCLUSIONS AND DISCUSSION

Optimizing the reserve price in a second-price auction is
an important theoretical and practical concern. We introduced
a regret minimization algorithm to optimize the reserve price
incurring a regret of only ˜O(

√
T ). We showed the result both

for the case where the number of bidders is known, and
for the case where the number of bidders is drawn from a
known distribution. The former assumption, of known fixed
number of bidders, is applicable when the number of bidders
is given as the outcome of the auction. The assumption that
the distribution over the number of bidders is known is rather
realistic, even in the case where the number of participating
bidders is not given explicitly. For example, one can hope to
estimate such data from historical data that might be made
available from the auctioneer.

Our optimization of the reserve prices depends only on
observable outcomes of the auction. Specifically, we need only
observe the seller’s actual revenue at each step. This is impor-
tant in many applications, such as e-Bay, AdX or AdSense,
where the auctioneer is a different entity from the seller, and
provides the seller with only a limited amount of information
regarding the actual auction. It is also important that we
make no assumptions about the distribution of the bidder’s
bid (or its relationship to the bidder’s valuation) since many
such assumptions are violated in reality. The only assumption
that we do make is that the distributions of the bidders are
identical. This assumption is a fairly good approximation of
reality in many cases where the seller conducts a large number
of auctions and bidders rarely participate in a large number of
them.

The resulting algorithm is very simple at a high level, and
potentially attractive to implement in practice. Conceptually,
we would like to estimate the optimal reserve price. The main
issue is that if we simply exploit the current best estimate,
we might miss essential exploration. This is why, instead
of playing the current best estimate, the algorithm plays a
minimal ε-optimal reserve price, where ε shrinks over time.
The importance of playing the minimal near-optimal reserve
price is that it allows for efficient exploration of the prices, due
to the specific feedback model provided by the second-price
auction setting.

An interesting direction for extending our results is the
generalized second price auction model, when multiple items
of different quality are sold at each step. Here the problem
of estimating the expected revenue function becomes more
involved due to the presence of terms that depend on the
correlation of order statistics.
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A different open issue, of more technical nature, is
whether the inverse dependence on μ(p∗) in Theorem 1
(and on μ(p∗)2 in Theorem 3) can somehow be removed.
Indeed, these factors do not seem to be inherent to the problem
itself, but only to the kind of algorithms we use.

In a similar vein, because the number of bidders (Section II)
or the distribution on the number of bidders (Section III under
assumption (8)) does not explicitly show up in the regret
bounds, one may wonder whether our algorithm really needs
to know this information. Unfortunately, the answer seems to
be affirmative, as our algorithm hinges on reconstructing the
underlying bid distribution F(·) from the distribution of the
second-highest bid F2(·), and we are currently unaware of how
this could be done without knowing m (or its distribution).
A simple attempt to remove the dependence on m from
Algorithm 1 is to let m → ∞ in the reconstruction func-
tion β(·). The resulting β(x) would still be well defined, since
limm→∞ β(x) = x − x log x , uniformly over x ∈ [0, 1], and
Lemma 1 would still hold since its statement is independent
of m. However, we would no longer be optimizing the “right”
function μ̂i (p) but an approximation thereof, the error in this
approximation propagating across time steps in an additive
manner, so that at the end of T steps we would obtain a linear
regret bound of the form ˜O

(

dm T + √
T
)

, where dm is con-
stant with T , and goes to zero as the true underlying m goes to
infinity. The question whether it is possible to refine this sim-
ple argument so as to achieve a nontrivial (i.e., sublinear in T )
cumulative regret bound without knowing anything about m
remains open.

APPENDIX

MAIN PROOFS

Proof of Fact 1: By definition of R(p) we can write

μ(p) =
∫ 1

p
x d F2(x) + p P

(

B(2) < p ≤ B(1)
)

. (9)

By applying the identity E[X] = ∫

P(X > x) dx to the
nonnegative random variable B(2)

I{B(2)>p} we obtain
∫ 1

p
x d F2(x) = p

(

1 − F2(p)
)+
∫ 1

p

(

1 − F2(x)
)

dx

= p − pF2(p) + E
[

B(2)
]

−
∫ p

0

(

1 − F2(x)
)

dx

= E
[

B(2)
]− p F2(p) +

∫ p

0
F2(t) dt .

Moreover,

F2(p) = m (F(p))m−1 (1 − F(p)
)+ (F(p))m

and

P
(

B(2) < p ≤ B(1)
) = m

(

1 − F(p)
)

(F(p))m−1.

Substituting the above into (9) and simplifying concludes the
proof. �

Proof of Lemma 1: A simple derivative argument shows that
the function β(·) is a strictly increasing and concave mapping

from [0, 1] onto [0, 1]. Hence its inverse β−1(·) exists and is
strictly increasing and convex on [0, 1]. From our assumptions
we immediately have: (i) x ≤ β−1(a+ε) for any ε ∈ [0, 1−a],
and (ii) β−1(a − ε) ≤ x for any ε ∈ [0, a].

In turn, because of the convexity of β−1(·), we have

β−1(a+ ε) ≤ β−1(a)+ 1 − β−1(a)

1 − a
ε, ∀ε ∈ [0, 1 − a]. (10)

Similarly, by the convexity and the monotonicity of β−1(·) we
can write

β−1(a − ε) ≥ β−1(a) − dβ−1(x)

dx

∣

∣

∣

x=a
ε

≥ β−1(a) − 1 − β−1(a)

1 − a
ε, ∀ε ∈ [0, a]. (11)

At this point, we need the following technical claim.
Claim 1:

1 − β−1(a) ≤ 2
√

1 − a, ∀a ∈ [0, 1].
Proof of Claim: Note that the case a ∈ [0, 3/4) holds

trivially since 2
√

1 − a ≥ 1, and therefore we need to
consider only a ∈ [3/4, 1]. Introduce the auxiliary function
f (a) = 1 − 2

√
1 − a. The claim is proven by showing that

β( f (a)) ≤ a for all a ∈ [3/4, 1]. We prove the claim by
showing that β( f (a)) is a concave function of a ∈ [3/4, 1],
and that d β( f (a))

d a

∣

∣

a=1 ≥ 1, while β( f (1)) = 1. We have

d β( f (a))

d a
= −2(m − 1)

1 − ( f (a))−1/m

1 − f (a)
.

Hence, using L’Hopital’s rule,

d β( f (a))

d a

∣

∣

a=1 = 2(m − 1)

m
≥ 1

since m ≥ 2. Moreover,

d2β( f (a))

d a2 = −
(

m − 1

m

)

( f (a))−
m+1

m × 1

1 − a

+m − 1

2
× ( f (a))−1/m − 1

(1 − a)3/2

which is nonpositive if and only if m(( f (a))−1/m − 1) ≤
(1− f (a)) ( f (a))−

m+1
m holds for any a ∈ [3/4, 1]. Since f (a)

ranges in [0, 1] when a ∈ [3/4, 1], after some simplifications,
one can see that the above inequality is equivalent to

(m + 1) x ≤ m x
m+1

m + 1, ∀x ∈ [0, 1].
In turn, this inequality can be seen to hold by showing
via a simple derivative argument that the function g(x) =
m x

m+1
m + 1 is convex and increasing for x ∈ [0, 1], while

g(0) = 1 > 0 and g′(1) = m + 1. �
The claim together with (10) and (11) allows us to conclude

the proof of Lemma 1. Specifically, the second inequality
in (2) is obtained by (10) and extended to any ε ≥ 0 just
by observing that, by the claim, for ε > 1 − a the right-
most side of (2) is larger than 1. Moreover, the first inequality
in (2) is obtained by (11) and extended to any ε ≥ 0 by
observing that for ε > a the left-most side of (2) is smaller
than β−1(a) − 2a√

1−a
≤ a − 2a√

1−a
≤ 0 for any a ∈ [0, 1],

where we have used the fact that β−1(a) ≤ a. �
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Proof of Lemma 2: Let B(1)
k and B(2)

k denote the maximum
and the second-maximum of k i.i.d. bids B1, . . . , Bk . Set for
brevity A = P

(

B(1)
m > p

)

. Then we have

A ≤ 2 P
(

B(1)
�m/2� > p

)

and

A ≤ 2 P
(

B(1)
�m/2� > p

)+ P
(

B1 > p
) ≤ 3 P

(

B(1)
�m/2� > p

)

.

Hence

1 − F2(p) = P
(

B(2)
m > p

)

≥ P
(

B(1)
�m/2� > p

)× P
(

B(1)
�m/2� > p

)

≥ A

3
× A

2
.

In turn, A ≥ μ(p), since each time all the bids are less than p
the revenue is zero. Therefore we have obtained that

1 − F2(p) ≥ μ2(p)

6

holds for all p ∈ [0, 1]. Finally, since ̂F2,i is the empir-
ical version of F2 based on the observed revenues during
stage i (see Section II-C), the classical Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality [13] implies that with probability
at least 1 − δ/3S, conditioned on all past stages,

max
p∈[ p̂i ,1]

∣

∣̂F2,i (p) − F2(p)
∣

∣ ≤
√

1

2Ti
ln

6S

δ
.

�
Proof of Lemma 3: We start by proving (3). Fix any stage i

and write
∣

∣μ(p) − μ̂i (p)
∣

∣ ≤
∣

∣

∣

∣

∫ p

0
F2(t) dt −

∫ p

0

̂F2,i (t) dt

∣

∣

∣

∣

+p
∣

∣

∣(F(p))m − β−1(
̂F2,i (p)

)

∣

∣

∣

≤
∫ p

0

∣

∣F2(t) − ̂F2,i (t)
∣

∣ dt

+p
∣

∣

∣(F(p))m − β−1(
̂F2,i (p)

)

∣

∣

∣

≤ p max
t∈[0,p]

∣

∣F2(t) − ̂F2,i (t)
∣

∣

+p
∣

∣

∣(F(p))m − β−1(
̂F2,i (p)

)

∣

∣

∣. (12)

The DKW inequality implies that

p max
t∈[0,p]

∣

∣F2(t) − ̂F2,i (t)
∣

∣ ≤ p

√

1

2Ti
ln

6S

δ
≤ Cδ,i (p) (13)

holds with probability at least 1 − δ/(3S). As for the second
term in (12) we apply again the DKW inequality in com-
bination with Lemma 1 with x = (F(p))m = β−1

(

F2(p)
)

,

a = ̂F2,i (p), and ε =
√

1
2Ti

ln 6S
δ . This yields

p
∣

∣

∣β−1(F2(p)
)− β−1(

̂F2,i (p)
)

∣

∣

∣ ≤ Cδ,i (p)

with the same probability of at least 1 − δ/(3S). Putting
together and using the union bound over the S stages gives (3).

We prove (4) by induction on i = 1, . . . , S. We first show
that the base case i = 1 holds with probability at least 1−δ/S.

Then we show that if (4) holds for i − 1, then it holds for i
with probability at least 1 − δ/S over all random events in
stage i . Therefore, using a union bound over i = 1, . . . , S we
get that (4) holds simultaneously for all i with probability at
least 1 − δ.

For the base case i = 1 note that μ̂1(p∗) ≤ μ̂1( p̂∗
1)

holds with probability at least 1 − δ/(3S) because we are
assuming (Lemma 2) that ̂F2(p∗) ≤ 1 − α holds with the
same probability, and so p̂∗

1 maximizes μ̂1 over a range that
with probability at least 1 − δ/(3S) contains p∗. Moreover,
using (3) we obtain

μ(p∗) − μ̂1(p∗) ≤ 2Cδ,1(p∗)

and

μ̂1( p̂∗
1) − μ( p̂∗

1) ≤ 2Cδ,1( p̂∗
1).

Since μ( p̂∗
1) − μ(p∗) ≤ 0 by definition of p∗, we obtain

0 ≤ μ̂1( p̂∗
1) − μ̂1(p∗) ≤ 2Cδ,1( p̂∗

1) + 2Cδ,1(p∗)

as required. Finally, p∗ ≥ p̂1 trivially holds because p̂1 = 0.
We now prove (4) for i > 1 using the inductive assumption

p∗ ≥ p̂i−1 and

0 ≤ μ̂i−1( p̂∗
i−1) − μ̂i−1(p∗) ≤ 2Cδ,i−1( p̂∗

i−1) + 2Cδ,i−1(p∗).

The inductive assumption and ̂F2,i (p∗) ≤ 1−α directly imply
p∗ ∈ Pi

⋂{

p : ̂F2,i−1(p) ≤ 1 − α
}

(recall the definition of
the set of candidate prices Pi given in Algorithm 1). Thus we
have p∗ ≥ p̂i and μ̂i ( p̂∗

i ) ≥ μ̂i (p∗), because p̂∗
i maximizes μ̂i

over a range that contains p∗. The rest of the proof closely
follows that of (4) for the base case i = 1. �

Proof of Theorem 1: If S = S(T ) is the total number of
stages, then the regret of our algorithm is

(

μ(p∗) − μ( p̂0)
)

T1 +
S
∑

i=2

(

μ(p∗) − μ( p̂i)
)

Ti

≤ T1 +
S
∑

i=2

(

μ(p∗) − μ( p̂i)
)

Ti . (14)

For all stages i > 1 the following chain on inequalities
jointly hold with probability at least 1 − δ uniformly over
i = 2, . . . , S,

μ(p∗) − μ( p̂i)

≤ μ(p∗) − μ̂i−1( p̂i) + 2Cδ,i−1( p̂i)

(by (3) —note that p̂i ≥ p̂i−1)

≤ μ(p∗) − μ̂i−1
(

p̂∗
i−1

)+ 2Cδ,i−1( p̂∗
i−1) + 4Cδ,i−1( p̂i)

(since p̂i ∈ Pi )

≤ μ(p∗) − μ̂i−1(p∗) + 2Cδ,i−1( p̂∗
i−1) + 4Cδ,i−1( p̂i )

(since μ̂i−1( p̂∗
i−1) ≥ μ̂i−1(p∗) —see (4))

≤ 2Cδ,i−1(p∗) + 2Cδ,i−1( p̂∗
i−1) + 4Cδ,i−1( p̂i )

(by p∗ ≥ p̂i combined with (3))

≤ 8

√

1

αTi−1
ln

6S

δ

where in the last step we used the fact that ̂F2,i−1(p∗) ≤ 1−α
holds by Lemma 2, and that ̂F2,i−1(p) ≤ 1−α for p = p̂i and
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p = p̂∗
i−1 by the very definitions of p̂i and p̂∗

i−1, respectively.
Substituting back into (14) we see that with probability at least
1 − δ the regret of our algorithm is at most

T1 + 8
S
∑

i=2

Ti

√

1

αTi−1
ln

6S

δ
.

Our setting Ti = T 1−2−i
for i = 1, 2, . . . implies that S is

upper bounded by the minimum integer n such that

n
∑

i=1

T 1−2−i ≥ T .

Since i ≥ log2 log2 T makes Ti ≥ T
2 , then S ≤ �2 log2

log2 T � = O(log log T ). Moreover, observe that Ti = T 1−2−i

is equivalent to T1 = √
T and Ti√

Ti−1
= √

T , for i > 1.
We therefore have the upper bound

(14) ≤ √
T + 8

√
T S

√

1

α
ln

6S

δ
. (15)

If μ(p∗) > 0 and

min
i

Ti = T1 = √
T ≥ 72 ln(6S/δ)

μ(p∗)4

then α ≥ μ(p∗)2/12, and the above is of order
√

T (log log log T + log 1/δ) (log log T )

μ(p∗)
as claimed. �

Proof of Lemma 4: We start by observing that T (0) =
A(0) = 0, T (1) = A(1) = 1, T ′(x) ≥ 0 for x ∈ [0, 1],
and A′(x) = (1 − x)T ′′(x) ≥ 0 when x ∈ [0, 1]. Hence both
T (x) and A(x) are strictly increasing mappings from [0,1]
onto [0,1], and so are T −1(x), A−1(x) and A(T −1(x)). Hence
our assumptions on x can be rewritten as

T (A−1(a − ε)) ≤ x ≤ T (A−1(a + ε)).

Moreover, since T (·) and A(·) are both C∞(0, 1), so is
T (A−1(·)). Let ε < 1 − a. We can write

T (A−1(a + ε)) = T (A−1(a)) + ε
d T (A−1(x))

dx

∣

∣

∣

∣

x=ξ

for some ξ ∈ (a, a + ε), where

d T (A−1(x))

dx
= T ′(y)

A′(y)
= T ′(y)

(1 − y)T ′′(y)

and we set for brevity y = A−1(x) ∈ [0, 1]. Now, for any
y ∈ [0, 1],

T ′(y)

T ′′(y)
= y

∑

m≥2 m Q(m) ym−2

∑

m≥2 m (m − 1) Q(m) ym−2 ≤ y ≤ 1.

As a consequence, since A−1 is a nondecreasing function, we
can write

d T (A−1(x))

dx

∣

∣

∣

∣

x=ξ

≤ 1

1 − A−1(a + ε)
≤ 1

1 − T −1(a + ε)

(16)

the last inequality deriving from11 A(x) ≥ T (x) for all
x ∈ [0, 1]. Finally, from the convexity of T we have T (x) ≥
T (1) + (x − 1)T ′(1) = 1 + (x − 1)E[M]. Thus T −1(x) ≤
1 − 1−x

E[M] , x ∈ [0, 1], which we plug back into (16) to see that

d T (A−1(x))

dx

∣

∣

∣

∣

x=ξ

≤ E[M]
1 − (a + ε)

.

Replacing backwards, this yields the second inequality of (6).
To prove the first inequality of (6), we start off showing it

to hold for ε < min{a, 1−a}, and then extend it to ε < 1−a.
Set ε < a. Then proceeding as above we can see that, for
some ξ ∈ (a − ε, a),

T (A−1(a)) = T (A−1(a − ε)) + ε
d T (A−1(x))

dx

∣

∣

∣

∣

x=ξ

≤ T (A−1(a − ε)) + ε

1 − T −1(a)

≤ T (A−1(a − ε)) + ε E[M]
1 − a

≤ T (A−1(a − ε)) + ε E[M]
1 − (a + ε)

the last inequality requiring also ε < 1 − a. If now ε satisfies
a ≤ ε < 1 − a (assuming a < 1/2) then the first inequality
of (6) is trivially fulfilled. In fact,

T (A−1(a)) − ε E[M]
1 − (a + ε)

≤ A(A−1(a)) − a E[M]
1 − 2 a

= a

(

1 − E[M]
1 − 2 a

)

< 0

since E[M] ≥ 2. This concludes the proof of (6).
In order to prove (8), we set for brevity y = A−1(x), and

using the rules of differentiating inverse functions, we see that

d2 T (A−1(x))

dx2 = 1

(1 − y)2 T ′′(y)
+ T ′(y)

(1 − y)3 (T ′′(y))2

− T ′(y)T ′′′(y)

(1 − y)2 (T ′′(y))3 .

Thus d2

dx2 T (A−1(x)) ≥ 0 for x ∈ [0, 1] is equivalent to

(T ′′(y))2 (1 − y) + T ′(y)T ′′(y)

≥ T ′(y)T ′′′(y)(1 − y), ∀x ∈ [0, 1].
Since y ranges over [0,1] when x does, (7) is actually
equivalent to the convexity of T (A−1(x)) on x ∈ [0, 1]. Under
the above convexity assumption, we can write, for ε ≤ 1 − a,

T (A−1(a + ε)) ≤ T (A−1(a)) + 1 − T (A−1(a))

1 − a
ε

≤ T (A−1(a)) + ε

1 − a
.

On the other hand, if ε > 1 − a the above inequality
vacuously holds, since the right-hand side is larger than one,
while T (A−1(x)) ≤ 1 for any x ∈ [0, 1]. This proves the

11Whereas the function A(·) is, in general, neither convex nor concave, T (·)
is a convex lower bound on A(·).
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second inequality in (8). Similarly, by the convexity and the
monotonicity of T (A−1(·)) we can write, for all ε ∈ [0, a],

T (A−1(a − ε)) ≥ T (A−1(a)) − dT (A−1(x))

dx

∣

∣

∣

∣

x=a
ε

≥ T (A−1(a)) − 1 − T (A−1(a))

1 − a
ε

≥ T (A−1(a)) − ε

1 − a

which gives the first inequality in (8). We extend the above
to any ε ≥ 0 by simply observing that ε > a implies that
T (A−1(a)) − ε

1−a < a − a
1−a < 0, where T (A−1(a)) ≤ a

follows from the convexity of T (A−1(·)). This makes (8)
trivially fulfilled. �

Proof of Lemma 5: Let B(1)
m and B(2)

m denote the highest and
the second-highest of m i.i.d. bids B1, . . . , Bm . Recall from
the proof of Lemma 2 that, for any m ≥ 2

P
(

B(1)
�m/2� > p

) ≥ 1

2
P
(

B(1)
m > p

)

and

P
(

B(1)
�m/2� > p

) ≥ 1

3
P
(

B(1)
m > p

)

.

Moreover,

1 − F̄2(p) = EM

[

P
(

B(2)
M > p

∣

∣M
)

]

≥ EM

[

P
(

B(1)
�M/2� > p

∣

∣M
) × P

(

B(1)
�M/2� > p

∣

∣M
)

]

≥ 1

6
EM

[

(

P
(

B(1)
M > p

∣

∣M
)

)2
]

≥ 1

6

(

EM

[

P
(

B(1)
M > p

∣

∣M
)

])2 ≥ 1

6
μ2(p)

the second-last inequality being Jensen’s, and the last one
deriving from I{B(1)

m >p} ≥ Rm(p) for all m ≥ 2 and p ∈ [0, 1].
We then conclude as in the proof of Lemma 2 by applying

DKW on the uniform convergence of ̂F2,i to F̄2. �
Proof of Theorem 2: Consider a setting with two bidders

(m = 2) where both bids B1, B2 are revealed at the end of
each auction, irrespective of the chosen reserve price. Note
that a lower bound in this setting implies a lower bound in
the harder setting of Theorem 1, in which only the revenue is
revealed.

Consider bid distributions of the form

P
(

B = 1
2

) = 1
2 + ε and P

(

B = 3
4

) = 1
2 − ε.

Since the bid distribution is supported on
{ 1

2 , 3
4

}

, the expected
revenue of a reserve price 0 < p < 1

2 is never greater than that
of p = 1

2 . Similarly, the expected revenue of a reserve price
1
2 < p < 3

4 is never greater than that of p = 3
4 . Therefore,

without loss of generality we may restrict our attention to
strategies that select their prices from

{ 1
2 , 3

4

}

.

We now compute the expected revenue of p = 1
2 and p = 3

4 ,

μ
( 1

2

) = 1

2

(

1

2
+ ε

)2

+ 2 × 1

2

(

1

4
− ε2

)

+ 3

4

(

1

2
− ε

)2

=
(

3

4

)2

− 1

4
ε + 1

4
ε2

μ
( 3

4

) = 2 × 3

4

(

1

4
− ε2

)

+ 3

4

(

1

2
− ε

)2

=
(

3

4

)2

− 3

4
ε − 3

4
ε2.

Therefore

μ
( 1

2

)− μ
( 3

4

) = ε

2
+ ε2. (17)

For any fixed ε ∈ (0, 1
4

)

, consider now the random variable
Z ∈ {−1,+1} such that P(Z = +1) = P(Z = −1) = 1

2 and
let μP be the expected revenue function of the bid distribution

P(B = a) =
{

1
2 + Zε if a = 1

2
1
2 − Zε if a = 3

4 .

We now prove that no deterministic mechanism can have small
regret on both conditional bid distributions P( · | Z = +1) and
P( · | Z = −1)

According to (17),

μP
( 1

2 | Z = +1
) = μP

( 3
4 | Z = +1

)+ ε
2 + ε2.

Moreover, switching ε to −ε gives

μP
( 3

4 | Z = −1
) = μP

( 1
2 | Z = −1

)+ ε
2 − ε2.

Since ε is chosen of the order of T −1/2, in the rest of the proof
we may ignore the term ε2 appearing in the expected revenue
function μP . This adds a constant to the regret, which is taken
into account by the asymptotic notation. Now let p∗ = p∗(Z)
be the optimal reserve price for the conditional bid distribution.
That is, p∗ = 1

2 if Z = +1 and p∗ = 3
4 if Z = −1.

Fix any deterministic algorithm choosing reserve
prices p1, p2, . . . Let T1/2 and T3/4 be the number of
times pt = 1

2 and pt = 3
4 , respectively. Finally, let T ∗ be the

number of times pt = p∗. Because the regret increases by ε
2

every time pt 	= p∗ (recall that we are ignoring the ε2 term
in μP ), the expected regret of the algorithm with respect to
the worst-case choice of Z is

max
z∈{−1,+1}

T
∑

t=1

E
[

μ(p∗) − μ(pt) | Z = z
]

≥
T
∑

t=1

E
[

μ(p∗) − μ(pt)
]

= ε

2

(

T − E[T ∗])

= ε

2

(

T − 1

2

(

E[T1/2 | Z = +1] + E[T3/4 | Z = −1]
)

)

.

In this simplified setting, where the mechanism can observe
the individual bids, each pt is determined by the independent
bid pairs

(

B(1)
1 , B(2)

1

)

, . . . ,
(

B(1)
T , B(2)

T

)

. Let P+
T and P−

T be
the joint distributions of the bid pairs when Z = +1 and
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Z = −1, respectively. Finally, let PT = 1
2

(

P+
T + P−

T

)

. Then,
Pinsker’s inequality implies

P+
T

(

pt = 1
2

) ≤ PT
(

pt = 1
2

)+
√

1

2
KL
(

PT ‖P+
T

)

≤ PT
(

pt = 1
2

)+
√

1

4
KL
(

P−
T ‖P+

T

)

where we used the convexity of the relative entropy KL
(· ‖P+

T

)

in the last step.
We now recognize that P+

T and P−
T are product distributions

of T pairs of (shifted and scaled) independent Bernoulli
random variables B 1

2 +ε
and B 1

2 −ε
, with parameters 1

2 + ε and

1
2 − ε, respectively. Therefore, taking the scaling factor into
account and using the chain rule for relative entropy gives

KL
(

P−
T ‖P+

T

) ≤ KL
(

P−
T −1‖P+

T −1

)+ 2 KL
(

B 1
2 −ε

‖B 1
2 +ε

)

≤ 2T KL
(

B 1
2 −ε

‖B 1
2 +ε

)

≤ 32ε2T

the last inequality holding if ε ∈ [0, 0.47
]

. Hence

E[T1/2 | Z = +1] ≤ E[T1/2] + T
√

1
4 · 32ε2T

= E[T1/2] + εT 3/2
√

8.

Similarly,

E[T3/4 | Z = −1] ≤ E[T3/4] + εT 3/2
√

8.

Therefore
1

2

(

E[T1/2 | Z = +1] + E[T3/4 | Z = −1]
)

≤ 1

2

(

E[T1/2] + E[T3/4]
)+ εT 3/2

√
8

= T

2
+ εT 3/2

√
8.

This implies

T
∑

t=1

E
[

μ(p∗) − μ(pt)
] ≥ ε

2

(

T − T
2 − εT 3/2

√
8
)

.

Choosing ε = �
(

T −1/2
)

concludes the proof of the
theorem. �

Proof of Lemma 7: Since the revenue RM (p) is determined
by B(1)

M and B(2)
M only, we use the notation Rp(b1, b2) to

denote the revenue RM (p) when B(1)
M = b1 and B(2)

M = b2.
Since b1 ≥ b2, in order to compute the pseudo-dimension of
F we have to determine the largest number of points shattered
in the region S = {(b1, b2) : 0 ≤ b2 ≤ b1 ≤ 1} ⊂ R

2 where
the functions Rp are defined as

Rp(b1, b2) =
⎧

⎨

⎩

b2 if b2 ≥ p
p if b2 < p ≤ b1
0 if b1 < p.

Note that each function Rp defines an axis-parallel rectangle
with corners (p, p), (p, 0), (1, p) and (1, 0). Inside the
rectangle Rp = p, to the left of the rectangle Rp = 0, and
points (b1, b2) ∈ S above it satisfy Rp(b1, b2) = b2.

We now show that F shatters any two points x1 = (b1, b2)
and x2 = (b1 + ε, b2 + ε) in the region S such that ε > 0
and b2 + ε < b1. This is shown by the following case analysis
where we use the values r1 = b2 and r2 = b2 + ε.

• p > b1 + ε, this realizes the pattern (0, 0) because
Rp(x1) = 0 ≤ b2 and Rp(x2) = 0 ≤ b2 + ε;

• b1 < p < b1 + ε, this realizes the pattern (0, 1)
because Rp(x1) = 0 ≤ b2 and Rp(x2) = p > b2 + ε;

• b2 + ε < p < b1, this realizes the pattern (1, 1) because
Rp(x1) = p > b2 and Rp(x2) = p > b2 + ε;

• b2 < p < b2 + ε, this realizes the pattern (1, 0)
because Rp(x1) = p > b2 and Rp(x2) = b2 + ε.

In order to prove that F can not shatter any three points in S,
arrange on the real line the six coordinate values of these
three points. These six numbers define seven intervals. When
p ranges within any such interval, the value of Rp must remain
constant on all the three points. This is because the value of
Rp(b1, b2) changes only when p crosses b1 or b2. But then,
F can only realize at most seven of the eight patterns needed
to shatter the three points. �

Proof of Theorem 4: For the sake of brevity, let Rt (p)
denote RMt

t (p). Also, let Et [·] be the conditional expecta-
tion Et [ · | p1, . . . , pt−1], i.e., the expectation of the random
variable at argument conditioned on all past bids and all past
number of bidders. Let p∗

T be the random variable defined as

p∗
T = argmax

p∈[0,1]

T
∑

t=1

Rt (p).

Then
T
∑

t=1

Rt (p∗
T ) −

T
∑

t=1

Rt (pt )

=
T
∑

t=1

Rt (p∗
T ) − Tμ(p∗

T ) +
T
∑

t=1

Et
[

Rt (pt )
]−

T
∑

t=1

Rt (pt)

+ Tμ(p∗
T ) −

T
∑

t=1

Et
[

Rt (pt)
]

≤ max
p∈[0,1]

(

T
∑

t=1

Rt (p) − T μ(p)

)

(18)

+
T
∑

t=1

(

Et
[

Rt (pt )
]− Rt (pt)

)

(19)

+ Tμ(p∗
T ) −

T
∑

t=1

Et
[

Rt (pt)
]

. (20)

In order to bound (18) we combine Lemma 6 with Lemma 7.
This gives

max
p∈[0,1]

(

T
∑

t=1

Rt (p) − T μ(p)

)

≤ C

√

2T ln
1

δ

with probability at least 1 − δ, where C is the constant
mentioned in Lemma 6.

In order to bound (19), note that Zt = Et
[

Rt (pt )
]− Rt (pt )

for t = 1, 2, . . . is a martingale difference sequence with
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bounded increments, Et [Zt ] = 0 with Zt ∈ [−1, 1] for each t .
Therefore, the Hoeffding-Azuma inequality for martingales
establishes that

T
∑

t=1

(

Et
[

Rt (pt )
]− Rt (pt )

)

≤
√

2T ln
1

δ

with probability at least 1 − δ.
Finally, term (20) is bounded via Theorem 3 after observing

that μ(p∗
T ) ≤ μ(p∗), where p∗ = argmaxp∈[0,1] μ(p) is

the maximizer of the expected revenue. This concludes the
proof. �

Proof of Theorem 5: Following (15), the regret accumulated
in block r is upper bounded by

√

Tr

(

1 + 8 Sr

√

1

α
ln

6Sr

δr

)

with probability at least 1−δr , where Sr ≤ �2 log2 log2 Tr� =
O(log r), provided μ(p∗) > 0 and

√

Tr ≥ 72 ln(6Sr/δr )

μ(p∗)4 . (21)

On the other hand, if (21) is false, then we can simply upper
bound the cumulative regret in block r by its length Tr .

Because the algorithm is restarted at the beginning of each
block, these cumulative regrets have to be summed over
blocks. Let rT be the index of the final block. Clearly, if the
total number of steps is T then TrT ≤ 2T , and rT ≤ 1+log2 T .
Moreover, denote by r̄ the larger r such that (21) is false.
Taking a union bound over blocks (and noting that

∑

r δr ≤ δ),
we have that with probability at least 1 − δ the cumulative
regret of Algorithm 1 is upper bounded by

r̄
∑

r=0

Tr +
rT
∑

r=r̄+1

√

Tr

(

1 + 8 Sr

√

1

α
ln

6Sr

δr

)

.

We upper bound the two sums in the above expression
separately. We have

r̄
∑

r=0

Tr = O
(

2r̄
)

.

But by its very definition r̄ also satisfies

2r̄/2 ≤ 72 ln(6SrT /δrT )

μ(p∗)4

so that the first sum can be overapproximated as

r̄
∑

r=0

Tr = O
(

1

μ(p∗)8 log2
(

(log log T )(T + 1)(T + 2)

δ

))

.

As for the second sum, we can write

rT
∑

r=r̄+1

√

Tr

(

1 + 8 Sr

√

1

α
ln

6Sr

δr

)

≤
rT
∑

r=0

√

Tr

(

1 + 8 Sr

√

1

α
ln

6Sr

δr

)

≤
rT
∑

r=0

√

Tr

(

1 + 8 SrT

√

1

α
ln

6SrT

δrT

)

=
rT
∑

r=0

√

Tr × O
(

log log T

μ(p∗)
√

log log T + log 1/δ

)

= O
(

2rT /2
)

× O
(

log log T

μ(p∗)
√

log log T + log 1/δ

)

= O
(√

T log log T

μ(p∗)
√

log log T + log 1/δ

)

.

Putting together proves the claimed bound. �
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